Esempio n. 1
0
def test_argmax_pushdown_bias():
    x = tensor.dmatrix()
    b = tensor.dvector()

    out = tensor.argmax(softmax_with_bias(x, b), axis=-1)
    env = gof.Env(
            [x,b],
            [out])

    theano.compile.mode.optdb.query(
            theano.compile.mode.OPT_FAST_RUN).optimize(env)

    #print 'AFTER'
    #for node in env.toposort():
    #    print node.op
    assert len(env.toposort()) == 4
    assert isinstance(env.toposort()[0].op, tensor.DimShuffle)
    assert isinstance(env.toposort()[1].op, tensor.Elemwise)
    assert isinstance(env.toposort()[2].op, tensor.MaxAndArgmax)
    assert str(env.toposort()[3].op) == 'OutputGuard'

    x = tensor.dmatrix()
    b = tensor.dvector()

    out = tensor.max_and_argmax(softmax_with_bias(x, b), axis=-1)[0]
    env = gof.Env(
            [x,b],
            [out])

    backup = config.warn.argmax_pushdown_bug
    config.warn.argmax_pushdown_bug = False
    try:
        theano.compile.mode.optdb.query(
                theano.compile.mode.OPT_FAST_RUN).optimize(env)
    finally:
        config.warn.argmax_pushdown_bug = backup

    #print 'AFTER'
    #for node in env.toposort():
    #    print node.op
    assert len(env.toposort()) == 3
    assert isinstance(env.toposort()[0].op, SoftmaxWithBias)
    assert isinstance(env.toposort()[1].op, tensor.CAReduce)
    assert isinstance(env.toposort()[1].op.scalar_op, theano.scalar.Maximum)
    assert str(env.toposort()[2].op) == 'OutputGuard'
Esempio n. 2
0
def test_argmax_pushdown_bias():
    x = tensor.dmatrix()
    b = tensor.dvector()

    out = tensor.argmax(softmax_with_bias(x, b), axis=-1)
    env = gof.Env([x, b], [out])

    theano.compile.mode.optdb.query(
        theano.compile.mode.OPT_FAST_RUN).optimize(env)

    #print 'AFTER'
    #for node in env.toposort():
    #    print node.op
    assert len(env.toposort()) == 4
    assert isinstance(env.toposort()[0].op, tensor.DimShuffle)
    assert isinstance(env.toposort()[1].op, tensor.Elemwise)
    assert isinstance(env.toposort()[2].op, tensor.MaxAndArgmax)
    assert str(env.toposort()[3].op) == 'OutputGuard'

    x = tensor.dmatrix()
    b = tensor.dvector()

    out = tensor.max_and_argmax(softmax_with_bias(x, b), axis=-1)[0]
    env = gof.Env([x, b], [out])

    backup = config.warn.argmax_pushdown_bug
    config.warn.argmax_pushdown_bug = False
    try:
        theano.compile.mode.optdb.query(
            theano.compile.mode.OPT_FAST_RUN).optimize(env)
    finally:
        config.warn.argmax_pushdown_bug = backup

    #print 'AFTER'
    #for node in env.toposort():
    #    print node.op
    assert len(env.toposort()) == 3
    assert isinstance(env.toposort()[0].op, SoftmaxWithBias)
    assert isinstance(env.toposort()[1].op, tensor.CAReduce)
    assert isinstance(env.toposort()[1].op.scalar_op, theano.scalar.Maximum)
    assert str(env.toposort()[2].op) == 'OutputGuard'
Esempio n. 3
0
 def f(a, b):
     return softmax_with_bias(a, b)[:, 1]
Esempio n. 4
0
 def test_infer_shape(self):
     fff = theano.function([],
                           outputs=softmax_with_bias(
                               numpy.random.rand(3, 4),
                               numpy.random.rand(4)).shape)
     assert all(fff() == [3, 4])
Esempio n. 5
0
 def f(a, b):
     return softmax_with_bias(a, b)[:,3]
Esempio n. 6
0
 def test_infer_shape(self):
     fff=theano.function([],outputs=softmax_with_bias(numpy.random.rand(3,4),numpy.random.rand(4)).shape)
     assert all(fff()==[3,4])