Esempio n. 1
0
    def dynamic_kmaxPooling(self, curConv_out, k):
        neighborsForPooling = TSN.images2neibs(ten4=curConv_out, neib_shape=(1,curConv_out.shape[3]), mode='ignore_borders')
        self.neighbors = neighborsForPooling

        neighborsArgSorted = T.argsort(neighborsForPooling, axis=1)
        kNeighborsArg = neighborsArgSorted[:,-k:]
        #self.bestK = kNeighborsArg
        kNeighborsArgSorted = T.sort(kNeighborsArg, axis=1)

        ii = T.repeat(T.arange(neighborsForPooling.shape[0]), k)
        jj = kNeighborsArgSorted.flatten()
        pooledkmaxTmp = neighborsForPooling[ii, jj]
        new_shape = T.cast(T.join(0, 
                           T.as_tensor([neighborsForPooling.shape[0]]),
                           T.as_tensor([k])),
                           'int64')
        pooledkmax_matrix = T.reshape(pooledkmaxTmp, new_shape, ndim=2)

        rightWidth=self.unifiedWidth-k            
        right_padding = T.zeros((neighborsForPooling.shape[0], rightWidth), dtype=theano.config.floatX)
        matrix_padded = T.concatenate([pooledkmax_matrix, right_padding], axis=1)      
        #recover tensor form
        new_shape = T.cast(T.join(0, curConv_out.shape[:-2],
                           T.as_tensor([curConv_out.shape[2]]),
                           T.as_tensor([self.unifiedWidth])),
                           'int64')

        curPooled_out = T.reshape(matrix_padded, new_shape, ndim=4)
                
        return curPooled_out
def unpool_switch_2d(input, ds, st=None,
            index_type='flattened', index_scope='local',
            original_input_shape=None):

    if input.ndim < 3:
        raise NotImplementedError('unpool_switched_2d requires a dimension >= 3')
    if input.ndim == 4:
        op = UnpoolSwitch(ds, st=st,
                  index_type=index_type, index_scope=index_scope,
                  original_input_shape=original_input_shape)
        output = op(input)
        return output

    # extract image dimensions
    img_shape = input.shape[-3:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = T.prod(input.shape[:-3])
    batch_size = T.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = T.cast(T.join(0, batch_size,
                                        img_shape), 'int64')
    input_4D = T.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of images
    op = UnpoolSwitch(ds, st=st,
              index_type=index_type, index_scope=index_scope,
              original_input_shape=original_input_shape)
    output = op(input_4D)

    # restore to original shape
    outshp = T.join(0, input.shape[:-2], output.shape[-2:])
    return T.reshape(output, outshp, ndim=input.ndim)
Esempio n. 3
0
def max_pool_2d(input, ds, ignore_border=False):
    """
    Takes as input a N-D tensor, where N >= 2. It downscales the input image by
    the specified factor, by keeping only the maximum value of non-overlapping
    patches of size (ds[0],ds[1])

    :type input: N-D theano tensor of input images.
    :param input: input images. Max pooling will be done over the 2 last dimensions.
    :type ds: tuple of length 2
    :param ds: factor by which to downscale. (2,2) will halve the image in each dimension.
    :param ignore_border: boolean value. When True, (5,5) input with ds=(2,2) will generate a
      (2,2) output. (3,3) otherwise.
    """
    if input.ndim < 2:
        raise NotImplementedError("max_pool_2d requires a dimension >= 2")

    # extract image dimensions
    img_shape = input.shape[-2:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = tensor.prod(input.shape[:-2])
    batch_size = tensor.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = tensor.cast(tensor.join(0, batch_size, tensor.as_tensor([1]), img_shape), "int64")
    input_4D = tensor.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of images
    op = DownsampleFactorMax(ds, ignore_border)
    output = op(input_4D)

    # restore to original shape
    outshp = tensor.join(0, input.shape[:-2], output.shape[-2:])
    return tensor.reshape(output, outshp, ndim=input.ndim)
def maxpool_3D(input, ds, ignore_border=False):
   
    #input.dimshuffle (0, 2, 1, 3, 4)   # convert to make video in back. 
    # no need to reshuffle. 
    if input.ndim < 3:
        raise NotImplementedError('max_pool_3d requires a dimension >= 3')

    # extract nr dimensions
    vid_dim = input.ndim
    # max pool in two different steps, so we can use the 2d implementation of 
    # downsamplefactormax. First maxpool frames as usual. 
    # Then maxpool the time dimension. Shift the time dimension to the third 
    # position, so rows and cols are in the back


    # extract dimensions
    frame_shape = input.shape[-2:]
    
    # count the number of "leading" dimensions, store as dmatrix
    batch_size = T.prod(input.shape[:-2])
    batch_size = T.shape_padright(batch_size,1)
    
    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = T.cast(T.join(0, batch_size,
                                        T.as_tensor([1,]), 
                                        frame_shape), 'int32')
    input_4D = T.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of videos in rows and cols
    op = DownsampleFactorMax((ds[1],ds[2]), ignore_border)          # so second and third dimensions of ds are for height and width
    output = op(input_4D)
    # restore to original shape                                     
    outshape = T.join(0, input.shape[:-2], output.shape[-2:])
    out = T.reshape(output, outshape, ndim=input.ndim)

    # now maxpool time
    # output (time, rows, cols), reshape so that time is in the back
    shufl = (list(range(vid_dim-3)) + [vid_dim-2]+[vid_dim-1]+[vid_dim-3])
    input_time = out.dimshuffle(shufl)
    # reset dimensions
    vid_shape = input_time.shape[-2:]
    
    # count the number of "leading" dimensions, store as dmatrix
    batch_size = T.prod(input_time.shape[:-2])
    batch_size = T.shape_padright(batch_size,1)
    
    # store as 4D tensor with shape: (batch_size,1,width,time)
    new_shape = T.cast(T.join(0, batch_size,
                                        T.as_tensor([1,]), 
                                        vid_shape), 'int32')
    input_4D_time = T.reshape(input_time, new_shape, ndim=4)
    # downsample mini-batch of videos in time
    op = DownsampleFactorMax((1,ds[0]), ignore_border)            # Here the time dimension is downsampled. 
    outtime = op(input_4D_time)
    # output 
    # restore to original shape (xxx, rows, cols, time)
    outshape = T.join(0, input_time.shape[:-2], outtime.shape[-2:])
    shufl = (list(range(vid_dim-3)) + [vid_dim-1]+[vid_dim-3]+[vid_dim-2])
    #rval = T.reshape(outtime, outshape, ndim=input.ndim).dimshuffle(shufl)
    return T.reshape(outtime, outshape, ndim=input.ndim).dimshuffle(shufl)
Esempio n. 5
0
    def __init__(self, model, shrinkable=False, nb_neurons_to_add=1):
        super(GrowiRBM, self).__init__()
        self.model = model
        self.shrinkable = shrinkable
        self.nb_neurons_to_add = nb_neurons_to_add
        self.maxZ = theano.shared(np.array(0, dtype="int64"))
        self.grad_W_new_neurons = theano.shared(np.zeros((nb_neurons_to_add, model.input_size), dtype=theano.config.floatX))

        zmask_start = model.sample_zmask_given_v(model.CD.chain_start)
        zmask_end = model.sample_zmask_given_v(model.CD.chain_end)
        z_start = T.sum(zmask_start, axis=1)
        z_end = T.sum(zmask_end, axis=1)
        max_Zs = T.maximum(z_start, z_end)
        maxZ = max_Zs.max()

        W_bak = model.W
        b_bak = model.b
        model.W = T.join(0, model.W, T.zeros((nb_neurons_to_add, model.input_size), dtype=theano.config.floatX))
        model.b = T.join(0, model.b, T.zeros(nb_neurons_to_add, dtype=theano.config.floatX))
        cost = model.free_energy(model.CD.chain_start) - model.free_energy(model.CD.chain_end)
        grad_W_new_neurons = theano.grad(T.mean(cost), model.W)[-nb_neurons_to_add:]
        model.W = W_bak
        model.b = b_bak

        # Will be part of the updates passed to the Theano function `learn` of the trainer.
        # Notes: all updates are done simultanously, i.e. params haven't been updated yet.
        self.updates[self.maxZ] = T.cast(maxZ, "int64")
        self.updates[self.grad_W_new_neurons] = grad_W_new_neurons
Esempio n. 6
0
        def apply(self, application, *args, **kwargs):
            # extra_ndim is a mandatory parameter, but in order not to
            # confuse with positional inputs, it has to be extracted from
            # **kwargs
            extra_ndim = kwargs.get("extra_ndim", 0)

            inputs = dict(zip(application.inputs, args))
            inputs.update(dict_subset(kwargs, application.inputs, must_have=False))
            reshaped_inputs = inputs
            # To prevent pollution of the computation graph with no-ops
            if extra_ndim > 0:
                for name, input_ in inputs.items():
                    shape, ndim = input_.shape, input_.ndim
                    # Remember extra_dims for reshaping the outputs correctly.
                    # Does not matter from which input, since we assume
                    # extra dimension match for all inputs.
                    extra_dims = shape[:extra_ndim]
                    new_first_dim = tensor.prod(shape[: extra_ndim + 1])
                    new_shape = tensor.join(0, new_first_dim[None], shape[extra_ndim + 1 :])
                    reshaped_inputs[name] = input_.reshape(new_shape, ndim=ndim - extra_ndim)
            outputs = wrapped.__get__(self, None)(**reshaped_inputs)
            if extra_ndim == 0:
                return outputs
            reshaped_outputs = []
            for output in pack(outputs):
                shape, ndim = output.shape, output.ndim
                new_shape = tensor.join(0, extra_dims, (shape[0] // tensor.prod(extra_dims))[None], shape[1:])
                reshaped_outputs.append(output.reshape(new_shape, ndim=ndim + extra_ndim))
            return reshaped_outputs
Esempio n. 7
0
def test_gpujoin_gpualloc():
    a = T.fmatrix('a')
    a_val = numpy.asarray(numpy.random.rand(4, 5), dtype='float32')
    b = T.fmatrix('b')
    b_val = numpy.asarray(numpy.random.rand(3, 5), dtype='float32')

    f = theano.function([a, b], T.join(0, T.zeros_like(a),T.ones_like(b)) + 4,
                        mode=mode_without_gpu)
    f_gpu = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)),
                            mode=mode_with_gpu)
    f_gpu2 = theano.function([a, b], T.join(0, T.zeros_like(a),
                                           T.ones_like(b)) + 4,
                             mode=mode_with_gpu)

    assert sum([node.op == T.alloc for node in f.maker.env.toposort()]) == 2
    assert sum([node.op == T.join for node in f.maker.env.toposort()]) == 1
    assert sum([node.op == B.gpu_alloc
                for node in f_gpu.maker.env.toposort()]) == 2
    assert sum([node.op == B.gpu_join
                for node in f_gpu.maker.env.toposort()]) == 1
    assert sum([node.op == B.gpu_alloc
                for node in f_gpu2.maker.env.toposort()]) == 2
    assert sum([node.op == B.gpu_join
                for node in f_gpu2.maker.env.toposort()]) == 1
    assert numpy.allclose(f(a_val, b_val), f_gpu2(a_val, b_val))
Esempio n. 8
0
def max_pool_2d(input, ds, ignore_border=False, st=None, padding=(0, 0),
                mode='max'):
    """
    Takes as input a N-D tensor, where N >= 2. It downscales the input image by
    the specified factor, by keeping only the maximum value of non-overlapping
    patches of size (ds[0],ds[1])

    :type input: N-D theano tensor of input images.
    :param input: input images. Max pooling will be done over the 2 last
        dimensions.
    :type ds: tuple of length 2
    :param ds: factor by which to downscale (vertical ds, horizontal ds).
        (2,2) will halve the image in each dimension.
    :type ignore_border: bool
    :param ignore_border: When True, (5,5) input with ds=(2,2)
        will generate a (2,2) output. (3,3) otherwise.
    :type st: tuple of lenght 2
    :param st: stride size, which is the number of shifts
        over rows/cols to get the the next pool region.
        if st is None, it is considered equal to ds
        (no overlap on pooling regions)
    :param padding: (pad_h, pad_w), pad zeros to extend beyond four borders
            of the images, pad_h is the size of the top and bottom margins,
            and pad_w is the size of the left and right margins.
    :type padding: tuple of two ints
    :param mode: 'max', 'average_inc_pad' or 'average_exc_pad'.
        Operation executed on each window.  `max` always excludes the padding
        in the computation. `average` gives you the choice to include or
        exclude it.
    :type mode: string
    """
    if input.ndim < 2:
        raise NotImplementedError('max_pool_2d requires a dimension >= 2')
    if input.ndim == 4:
        op = DownsampleFactorMax(ds, ignore_border, st=st, padding=padding,
                                 mode=mode)
        output = op(input)
        return output

    # extract image dimensions
    img_shape = input.shape[-2:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = tensor.prod(input.shape[:-2])
    batch_size = tensor.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = tensor.cast(tensor.join(0, batch_size,
                                        tensor.as_tensor([1]),
                                        img_shape), 'int64')
    input_4D = tensor.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of images
    op = DownsampleFactorMax(ds, ignore_border, st=st, padding=padding,
                             mode=mode)
    output = op(input_4D)

    # restore to original shape
    outshp = tensor.join(0, input.shape[:-2], output.shape[-2:])
    return tensor.reshape(output, outshp, ndim=input.ndim)
Esempio n. 9
0
def test_opt_gpujoin_onlyajoin():
    # from a bug in normal sampling
    _a = numpy.asarray([[1, 2], [3, 4]], dtype='float32')
    _b = numpy.asarray([[5, 6, 7], [8, 9, 10]], dtype='float32')
    a = cuda.shared_constructor(_a)
    b = cuda.shared_constructor(_b)

    c = tensor.join(1, a, b)

    f = theano.function([], c, mode=mode_with_gpu)

    f()

    graph_nodes = f.maker.fgraph.toposort()

    assert isinstance(graph_nodes[-1].op, cuda.HostFromGpu)
    assert isinstance(graph_nodes[-2].op, cuda.GpuJoin)

    assert numpy.all(f() == numpy.concatenate([_a, _b], axis=1))

    # test mixed dtype
    _b = numpy.asarray([[5, 6, 7], [8, 9, 10]], dtype='float64')
    b = theano.tensor.constant(_b)

    c = tensor.join(1, a, b)

    f = theano.function([], c, mode=mode_with_gpu)

    f()

    graph_nodes = f.maker.fgraph.toposort()
    assert isinstance(graph_nodes[-1].op, theano.tensor.Join)

    assert numpy.all(f() == numpy.concatenate([_a, _b], axis=1))
def max_pool_switch_2d(input, ds, ignore_border=None, st=None, padding=(0, 0),
            index_type='flattened', index_scope='local'):

    if input.ndim < 2:
        raise NotImplementedError('max_pool_switched_2d requires a dimension >= 2')
    if ignore_border is None:
        ignore_border = False
    if input.ndim == 4:
        op = MaxPoolSwitch(ds, ignore_border, st=st, padding=padding,
                  index_type=index_type, index_scope=index_scope)
        output = op(input)
        return output

    # extract image dimensions
    img_shape = input.shape[-2:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = T.prod(input.shape[:-2])
    batch_size = T.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = T.cast(T.join(0, batch_size,
                                        T.as_tensor([1]),
                                        img_shape), 'int64')
    input_4D = T.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of images
    op = MaxPoolSwitch(ds, ignore_border, st=st, padding=padding,
              index_type=index_type, index_scope=index_scope)
    output = op(input_4D)

    # restore to original shape
    outshp = T.join(0, input.shape[:-2], output.shape[-2:])
    return T.reshape(output, outshp, ndim=input.ndim)
Esempio n. 11
0
def pad_dims(input, leftdims, rightdims):
    """Reshapes the input to a (leftdims + rightdims) tensor

    This helper function is used to convert pooling inputs with arbitrary
    non-pooling dimensions to the correct number of dimensions for the
    GPU pooling ops.

    This reduces or expands the number of dimensions of the input to
    exactly `leftdims`, by adding extra dimensions on the left or by
    combining some existing dimensions on the left of the input.

    Use `unpad_dims` to reshape back to the original dimensions.

    Examples
    --------
    Given input of shape (3, 5, 7), ``pad_dims(input, 2, 2)``
    adds a singleton dimension and reshapes to (1, 3, 5, 7).
    Given that output from pad_dims, ``unpad_dims(output, input, 2, 2)``
    reshapes back to (3, 5, 7).

    Given input of shape (3, 5, 7, 9), ``pad_dims(input, 2, 2)``
    does not reshape and returns output with shape (3, 5, 7, 9).

    Given input of shape (3, 5, 7, 9, 11), ``pad_dims(input, 2, 2)``
    combines the first two dimensions and reshapes to (15, 7, 9, 11).

    Given input of shape (3, 5, 7, 9), ``pad_dims(input, 2, 3)``
    adds a singleton dimension and reshapes to (1, 3, 5, 7, 9).
    """
    assert input.ndim >= rightdims

    if input.ndim == (leftdims + rightdims):
        return input

    # extract image dimensions
    img_shape = input.shape[-rightdims:]

    non_pool_ndim = input.ndim - rightdims
    if non_pool_ndim < leftdims:
        # too few dimensions, pad on the left
        dummy_dims = tensor.as_tensor([1] * (leftdims - non_pool_ndim))
        new_shape = tensor.join(0, dummy_dims,
                                input.shape[:non_pool_ndim],
                                img_shape)
    else:
        # too many dimensions, combine the leading dimensions
        batched_ndim = non_pool_ndim - leftdims + 1
        batch_size = tensor.prod(input.shape[:batched_ndim])
        # convert to a vector for tensor.join
        batch_size = tensor.shape_padright(batch_size, 1)
        new_shape = tensor.join(0, batch_size,
                                input.shape[batched_ndim:non_pool_ndim],
                                img_shape)

    # store in the required shape
    new_shape = tensor.cast(new_shape, 'int64')
    input_ND = GpuReshape(leftdims + rightdims)(input, new_shape)
    return input_ND
Esempio n. 12
0
 def cost(self,Y,Y_hat):
     w = T.fscalar()
     r = self.r
     w = 0.05
     i = T.le(Y,w)
     j = T.eq(i,0)
     z = T.join(0,Y[i]/r,Y[j])
     z_hat = T.join(0,Y_hat[i]/r,Y_hat[j])
     return super(linear_mlp_bayesian_cost,self).cost(z,z_hat)
Esempio n. 13
0
def max_pool_3d(input, ds, ignore_border=False):
	"""
		Takes as input a N-D tensor, where N >= 3. It downscales the input video by
		the specified factor, by keeping only the maximum value of non-overlapping
		patches of size (ds[0],ds[1],ds[2]) (time, height, width)  
		
		:type input: N-D theano tensor of input images.
		:param input: input images. Max pooling will be done over the 3 last dimensions.
		:type ds: tuple of length 3
		:param ds: factor by which to downscale. (2,2,2) will halve the video in each dimension.
		:param ignore_border: boolean value. Example when True, (5,5,5) input with ds=(2,2,2) will generate a
		(2,2,2) output. (3,3,3) otherwise.
	"""
	if input.ndim < 3:
		raise NotImplementedError('max_pool_3d requires a dimension >= 3')
		
	vid_dim = input.ndim
	#Maxpool frame
	frame_shape = input.shape[-2:]

	# count the number of "leading" dimensions, store as dmatrix
	batch_size = T.prod(input.shape[:-2])
	batch_size = T.shape_padright(batch_size,1)
	new_shape = T.cast(T.join(0, batch_size,T.as_tensor([1,]),frame_shape), 'int32')
	
	input_4D = T.reshape(input, new_shape, ndim=4)
	# downsample mini-batch of videos in rows and cols
	op = DownsampleFactorMax((ds[1],ds[2]), ignore_border)
	output = op(input_4D)
	# restore to original shape
	outshape = T.join(0, input.shape[:-2], output.shape[-2:])
	out = T.reshape(output, outshape, ndim=input.ndim)
	
	#Maxpool time 
	# output (time, rows, cols), reshape so that time is in the back
	shufl = (list(range(vid_dim-4)) + list(range(vid_dim-3,vid_dim))+[vid_dim-4])
	input_time = out.dimshuffle(shufl)
	# reset dimensions
	vid_shape = input_time.shape[-2:]
	# count the number of "leading" dimensions, store as dmatrix
	batch_size = T.prod(input_time.shape[:-2])
	batch_size = T.shape_padright(batch_size,1)
	# store as 4D tensor with shape: (batch_size,1,width,time)
	new_shape = T.cast(T.join(0, batch_size,T.as_tensor([1,]),vid_shape), 'int32')
	input_4D_time = T.reshape(input_time, new_shape, ndim=4)
	# downsample mini-batch of videos in time
	op = DownsampleFactorMax((1,ds[0]), ignore_border)
	outtime = op(input_4D_time)
	# restore to original shape (xxx, rows, cols, time)
	outshape = T.join(0, input_time.shape[:-2], outtime.shape[-2:])
	shufl = (list(range(vid_dim-4)) + [vid_dim-1] + list(range(vid_dim-4,vid_dim-1)))
	#shufl = (list(range(vid_dim-3)) + [vid_dim-1]+[vid_dim-3]+[vid_dim-2])
	return T.reshape(outtime, outshape, ndim=input.ndim).dimshuffle(shufl)
Esempio n. 14
0
def max_pool_2d(input, ds, ignore_border=False, st=None):
    """
    Takes as input a N-D tensor, where N >= 2. It downscales the input image by
    the specified factor, by keeping only the maximum value of non-overlapping
    patches of size (ds[0],ds[1])

    :type input: N-D theano tensor of input images.
    :param input: input images. Max pooling will be done over the 2 last
        dimensions.
    :type ds: tuple of length 2
    :param ds: factor by which to downscale (vertical ds, horizontal ds).
        (2,2) will halve the image in each dimension.
    :type ignore_border: bool
    :param ignore_border: When True, (5,5) input with ds=(2,2)
        will generate a (2,2) output. (3,3) otherwise.
    :type st: tuple of lenght 2
    :param st: stride size, which is the number of shifts
        over rows/cols to get the the next pool region.
        if st is None, it is considered equal to ds
        (no overlap on pooling regions)

    """
    if input.ndim < 2:
        raise NotImplementedError('max_pool_2d requires a dimension >= 2')
    if input.ndim == 4:
        op = DownsampleFactorMax(ds, ignore_border, st=st)
        output = op(input)
        return output

    # extract image dimensions
    img_shape = input.shape[-2:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = tensor.prod(input.shape[:-2])
    batch_size = tensor.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = tensor.cast(tensor.join(0, batch_size,
                                        tensor.as_tensor([1]),
                                        img_shape), 'int64')
    input_4D = tensor.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of images
    op = DownsampleFactorMax(ds, ignore_border, st=st)
    output = op(input_4D)

    # restore to original shape
    outshp = tensor.join(0, input.shape[:-2], output.shape[-2:])
    return tensor.reshape(output, outshp, ndim=input.ndim)
Esempio n. 15
0
        def one_lstm_step_wpd(x_t, extra_x_in, h_tm1, c_tm1, 
                            a01_tm1,
                            W_xi, W_hi, W_xf, W_hf, W_xc, W_hc, W_xo, W_ho, 
                            W01_inattend,att_b2):
            #########################################
            #  For Attention 
            #########################################
            # 0D - ch-time-freq
            #att0_e_tl = T.tanh(T.dot(T.join(0, c_tm1, T.join(0, a0_tm1, x_t)), W0_inattend))
            #att0_a_tl = T.exp(att0_e_tl)/(T.exp(att0_e_tl)).sum(0,keepdims=True)
            #att_c_t = att0_a_tl*x_t

            # 0D2 - ch-time
            e = T.tanh(T.dot(T.join(0, extra_x_in, T.join(0, c_tm1, T.join(0, a01_tm1, x_t))), W01_inattend)+att_b2)
            att01_a_tl = T.exp(e)/(T.exp(e)).sum(0,keepdims=True)
            att01_c_t = T.extra_ops.repeat(att01_a_tl, 40, axis=0)*x_t # (7*5*40)*(7*5*40)
            att_c_t = att01_c_t
            if draw != None:
                att01_c_t = theano.printing.Print('att01_c_t')(att01_c_t)

            #e = T.tanh(T.dot(T.join(0, c_tm1, T.join(0, a02_tm1, att01_c_t)), W02_inattend))
            #att02_a_tl = T.exp(e)/(T.exp(e)).sum(0,keepdims=True) # 40*40
            #att_c_t = att02_a_tl*att01_c_t

            # 1D - timeframe
            #att1_e_tl = T.tanh(T.dot(T.join(0, c_tm1, T.join(0, a1_tm1, x_t)), W1_inattend))
            #att1_a_tl = T.exp(att1_e_tl)/(T.exp(att1_e_tl)).sum(0,keepdims=True)
            #att1_c_t = T.dot(att1_a_tl, x_t.reshape((7,5*40))).flatten() # (1,7) * ((7,5*40)) => (5*40)

            # 2D - channel
            #att2_e_tl = T.tanh(T.dot(T.join(0, c_tm1, T.join(0, a2_tm1, att1_c_t)), W2_inattend))
            #att2_a_tl = T.exp(att2_e_tl)/(T.exp(att2_e_tl)).sum(0,keepdims=True)
            #att2_c_t = T.dot(att2_a_tl, att1_c_t.reshape((5,40))).flatten() # (1,5) * ((5,40)) => (1,40)

            # 3D - frequency
            #att3_e_tl = T.tanh(T.dot(T.join(0, c_tm1, T.join(0, a3_tm1, att2_c_t)), W3_inattend))
            #att3_a_tl = T.exp(att3_e_tl)/(T.exp(att3_e_tl)).sum(0,keepdims=True) # 40*40
            #att_c_t = att3_a_tl*att2_c_t

            #########################################
            #  For LSTM
            #########################################
            x_t=att_c_t #rename
            i_t = T.nnet.sigmoid(theano.dot(x_t, W_xi) + theano.dot(h_tm1, W_hi))
            f_t = T.nnet.sigmoid(theano.dot(x_t, W_xf) + theano.dot(h_tm1, W_hf))
            c_t = f_t * c_tm1 + i_t * T.tanh(theano.dot(x_t, W_xc) + theano.dot(h_tm1, W_hc) ) 
            o_t = T.nnet.sigmoid(theano.dot(x_t, W_xo)+ theano.dot(h_tm1, W_ho)) 
            h_t = o_t * T.tanh(c_t)
            return [h_t, c_t, att01_a_tl]
Esempio n. 16
0
def max_pool_3d(input, ds, ignore_border=False):
    # [n,c,x,y,z]以外の入力は受け付けない
    if input.ndim != 5:
        raise NotImplementedError(
            'max_pool_3d requires a input [n, c, x, y, z]')

    # 入力次元
    vid_dim = input.ndim

    # [y, z]フレームの次元数
    frame_shape = input.shape[-2:]

    # バッチサイズ
    # フレーム次元以外の全ての次元の要素数を掛け合わせる
    batch_size = T.prod(input.shape[:-2])
    # http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.shape_padright
    batch_size = T.shape_padright(batch_size, 1)


    new_shape = T.cast(T.join(0, batch_size, T.as_tensor([1, ]), frame_shape),
                       'int32')
    input_4D = T.reshape(input, new_shape, ndim=4)

    op = DownsampleFactorMax((ds[1], ds[2]), ignore_border)
    output = op(input_4D)
    outshape = T.join(0, input.shape[:-2], output.shape[-2:])
    out = T.reshape(output, outshape, ndim=input.ndim)

    shufl = (
        list(range(vid_dim - 3)) + [vid_dim - 2] + [vid_dim - 1] + [
            vid_dim - 3])
    input_time = out.dimshuffle(shufl)
    vid_shape = input_time.shape[-2:]

    batch_size = T.prod(input_time.shape[:-2])
    batch_size = T.shape_padright(batch_size, 1)

    new_shape = T.cast(T.join(0, batch_size,
                              T.as_tensor([1, ]),
                              vid_shape), 'int32')
    input_4D_time = T.reshape(input_time, new_shape, ndim=4)
    op = DownsampleFactorMax((1, ds[0]), ignore_border)
    outtime = op(input_4D_time)
    outshape = T.join(0, input_time.shape[:-2], outtime.shape[-2:])
    shufl = (
        list(range(vid_dim - 3)) + [vid_dim - 1] + [vid_dim - 3] + [
            vid_dim - 2])
    return T.reshape(outtime, outshape, ndim=input.ndim).dimshuffle(shufl)
Esempio n. 17
0
def spatial_pyramid(x, fn=max_pool, scales=None, **kwargs):
    """
    Performs pooling over various quadrants of the data and then aggregates the result.
    :param x: see max_pool
    :param fn: pointer to function having prototype `function(x, **kwargs)`
    :param scales: list of quadrants over which to perform pooling.
    e.g. scales=[1,2] will perform pooling over the entire sequence (jointly), then pool
    individually over the first and second half of the data. The return vector would then be of
    length 3.
    :param kwargs: arguments to pass to max_pool.
    """
    assert DIM_TIME == 0
    assert scales
    for scale in scales:
        assert isinstance(scale, int)

    def chunk_pool(idx, x, scale):
        assert idx.ndim == 0
        assert x.ndim == 3
        assert scale.ndim == 0
        rval = fn(x[idx : idx + x.shape[0] / scale], **kwargs)
        assert rval.ndim == 2
        return rval

    rval = T.shape_padleft(T.zeros_like(x[0]))

    for scale in scales:
        indices = T.arange(0, x.shape[0], x.shape[0] / scale)
        temp, updates = theano.scan(chunk_pool,
                sequences = [indices],
                outputs_info = [None],
                non_sequences = [x, T.constant(scale)])
        rval = T.join(0, rval, temp)

    return rval[1:]
Esempio n. 18
0
def test_opt_gpujoin_joinvectors_elemwise_then_minusone():
    # from a bug in gpu normal sampling
    _a = numpy.asarray([1, 2, 3, 4], dtype='float32')
    _b = numpy.asarray([5, 6, 7, 8], dtype='float32')
    a = cuda.shared_constructor(_a)
    b = cuda.shared_constructor(_b)

    a_prime = tensor.cos(a)
    b_prime = tensor.sin(b)

    c = tensor.join(0, a_prime, b_prime)

    d = c[:-1]

    f = theano.function([], d, mode=mode_with_gpu)

    graph_nodes = f.maker.fgraph.toposort()

    assert isinstance(graph_nodes[-1].op, cuda.HostFromGpu)
    assert isinstance(graph_nodes[-2].op, cuda.GpuSubtensor)
    assert isinstance(graph_nodes[-3].op, cuda.GpuJoin)

    concat = numpy.concatenate([numpy.cos(_a), numpy.sin(_b)], axis=0)
    concat = concat[:-1]

    assert numpy.allclose(numpy.asarray(f()), concat)
Esempio n. 19
0
 def _lmul(self, x, T):
     if T:
         if len(self.col_shape())>1:
             x2 = x.flatten(2)
         else:
             x2 = x
         n_rows = x2.shape[0]
         offset = 0
         xWlist = []
         assert len(self._col_sizes) == len(self._Wlist)
         for size, W in zip(self._col_sizes, self._Wlist):
             # split the output rows into pieces
             x_s = x2[:,offset:offset+size]
             # multiply each piece by one transform
             xWlist.append(
                     W.lmul(
                         x_s.reshape(
                             (n_rows,)+W.col_shape()),
                         T))
             offset += size
         # sum the results
         rval = tensor.add(*xWlist)
     else:
         # multiply the input by each transform
         xWlist = [W.lmul(x,T).flatten(2) for W in self._Wlist]
         # join the resuls
         rval = tensor.join(1, *xWlist)
     return rval
Esempio n. 20
0
def test_gpujoin_gpualloc():
    a = T.fmatrix("a")
    a_val = numpy.asarray(numpy.random.rand(4, 5), dtype="float32")
    b = T.fmatrix("b")
    b_val = numpy.asarray(numpy.random.rand(3, 5), dtype="float32")

    f = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)) + 4, mode=mode_without_gpu)
    f_gpu = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)), mode=mode_with_gpu)
    f_gpu2 = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)) + 4, mode=mode_with_gpu)
    assert sum([node.op == T.alloc for node in f.maker.fgraph.toposort()]) == 2
    assert sum([node.op == T.join for node in f.maker.fgraph.toposort()]) == 1
    assert sum([isinstance(node.op, GpuAlloc) for node in f_gpu.maker.fgraph.toposort()]) == 2
    assert sum([node.op == gpu_join for node in f_gpu.maker.fgraph.toposort()]) == 1
    assert sum([isinstance(node.op, GpuAlloc) for node in f_gpu2.maker.fgraph.toposort()]) == 2
    assert sum([node.op == gpu_join for node in f_gpu2.maker.fgraph.toposort()]) == 1
    assert numpy.allclose(f(a_val, b_val), f_gpu2(a_val, b_val))
Esempio n. 21
0
    def link(self, input):
        self.input = input

        # select the lines where we apply k-max pooling
        neighbors_for_pooling = TSN.images2neibs(
            ten4=self.input,
            neib_shape=(self.input.shape[2], 1),  # we look the max on every dimension
            mode='valid'  # 'ignore_borders'
        )

        neighbors_arg_sorted = T.argsort(neighbors_for_pooling, axis=1)
        k_neighbors_arg = neighbors_arg_sorted[:, -self.k_max:]
        k_neighbors_arg_sorted = T.sort(k_neighbors_arg, axis=1)

        ii = T.repeat(T.arange(neighbors_for_pooling.shape[0]), self.k_max)
        jj = k_neighbors_arg_sorted.flatten()
        flattened_pooled_out = neighbors_for_pooling[ii, jj]

        pooled_out_pre_shape = T.join(
            0,
            self.input.shape[:-2],
            [self.input.shape[3]],
            [self.k_max]
        )
        self.output = flattened_pooled_out.reshape(
            pooled_out_pre_shape,
            ndim=self.input.ndim
        ).dimshuffle(0, 1, 3, 2)
        return self.output
Esempio n. 22
0
 def folding(self, curConv_out):
     #folding
     matrix_shape=T.cast(T.join(0,
                         T.as_tensor([T.prod(curConv_out.shape[:-1])]),
                         T.as_tensor([curConv_out.shape[3]])),
                         'int64')
     matrix = T.reshape(curConv_out, matrix_shape, ndim=2)
     odd_matrix=matrix[0:matrix_shape[0]:2]
     even_matrix=matrix[1:matrix_shape[0]:2]
     raw_folded_matrix=odd_matrix+even_matrix
     
     out_shape=T.cast(T.join(0,  curConv_out.shape[:-2],
                         T.as_tensor([curConv_out.shape[2]/2]),
                         T.as_tensor([curConv_out.shape[3]])),
                         'int64')
     fold_out=T.reshape(raw_folded_matrix, out_shape, ndim=4)
     return fold_out
Esempio n. 23
0
 def __init__(self, rng, x, topic_num=100):
     
     #input
     L2_input = sparse.csr_matrix("x",dtype=theano.config.floatX)
     #params
     vocab_size = x.shape[1]
     mu, sigma = x.data.mean(), x.data.var()**0.5
     
     rng = numpy.random.RandomState(numpy.random.randint(2**32-1)) if rng is None else rng
     self.L2_w = theano.shared(\
         numpy.asarray(\
             rng.normal(loc=mu,scale=sigma,size=(vocab_size, topic_num)),\
             dtype=theano.config.floatX\
         ),\
         borrow=True\
     )
     self.L2_b = theano.shared(numpy.zeros(topic_num,dtype=theano.config.floatX), borrow=True)
     self.params = [self.L2_w, self.L2_b]
     
     #stick-breaking:sticks->orthgonal sticks
     L2_stick = sparse.dot(L2_input,self.L2_w)+self.L2_b-\
         0.5*(L2_input.size/vocab_size*tensor.sum(self.L2_w**2,0)+self.L2_b**2)  
     zero_space = tensor.zeros((L2_input.shape[0],1),dtype=theano.config.floatX)
     L2_orth_stick = tensor.join(1, L2_stick, zero_space)\
         - tensor.join(1, zero_space, tensor.cumsum(L2_stick,1))
     Pasterik_orth_stick = tensor.log(1 + tensor.exp(L2_orth_stick))      
     #training model definition
     Likelihood = tensor.mean(Pasterik_orth_stick)
     grads = theano.grad(Likelihood, self.params)#gradient w.r.t params
     eta = tensor.scalar("eta")
     updates = [(param, param+eta*grad) for param, grad in zip(self.params, grads)]
     self._fit = theano.function(\
         inputs=[L2_input, eta],\
         outputs=Likelihood,\
         updates=updates\
     )
     #predict model definition
     self._predict = theano.function(\
         inputs=[L2_input],\
         outputs=tensor.argmax(L2_stick,axis=-1)\
     )
     self._codec = theano.function(\
         inputs=[L2_input],\
         outputs=L2_stick>0\
     )
Esempio n. 24
0
def _k_max_pooling(input, kmax):
  pool = input.dimshuffle(0, 2, 1, 3).flatten(ndim=3).dimshuffle(1,0,2).flatten(ndim=2).dimshuffle(1,0)
  neighborsArgSorted = T.argsort(pool, axis=1)
  yy = T.sort(neighborsArgSorted[:, -kmax:], axis=1).flatten()
  xx = T.repeat(T.arange(neighborsArgSorted.shape[0]), kmax)
  pool_kmax = pool[xx, yy]
  pool_kmax_shape = T.join(0, T.as_tensor([input.shape[0], input.shape[1], input.shape[3], kmax]))
  pooled_out = pool_kmax.reshape(pool_kmax_shape, ndim=4).dimshuffle(0, 1, 3, 2)
  return pooled_out
    def symb_forward(self, symb_input):
        """ 3d max pooling taken from github.com/lpigou/Theano-3D-ConvNet/
            (with modified shuffeling) """
        if symb_input.ndim < 5:
            raise NotImplementedError('max pooling 3D requires a dimension >= 5')

        height_width_shape = symb_input.shape[-2:]

        batch_size = _T.prod(symb_input.shape[:-2])
        batch_size = _T.shape_padright(batch_size, 1)

        new_shape = _T.cast(_T.join(0, batch_size, _T.as_tensor([1,]), height_width_shape), 'int32')

        input_4d = _T.reshape(symb_input, new_shape, ndim=4)

        # downsample height and width first
        # other dimensions contribute to batch_size
        op = _T.signal.downsample.DownsampleFactorMax((self.k_h, self.k_w), self.ignore_border, st=(self.d_h, self.d_w))
        output = op(input_4d)

        outshape = _T.join(0, symb_input.shape[:-2], output.shape[-2:])
        out = _T.reshape(output, outshape, ndim=symb_input.ndim)

        vol_dim = symb_input.ndim

        shufl = (list(range(vol_dim-4)) + [vol_dim-2]+[vol_dim-1]+[vol_dim-3]+[vol_dim-4])
        input_depth = out.dimshuffle(shufl)
        vol_shape = input_depth.shape[-2:]

        batch_size = _T.prod(input_depth.shape[:-2])
        batch_size = _T.shape_padright(batch_size,1)

        new_shape = _T.cast(_T.join(0, batch_size, _T.as_tensor([1,]), vol_shape), 'int32')
        input_4D_depth = _T.reshape(input_depth, new_shape, ndim=4)

        # downsample depth
        # other dimensions contribute to batch_size
        op = _T.signal.downsample.DownsampleFactorMax((1,self.k_d), self.ignore_border, st=(1,self.d_d))
        outdepth = op(input_4D_depth)

        outshape = _T.join(0, input_depth.shape[:-2], outdepth.shape[-2:])
        shufl = (list(range(vol_dim-4)) + [vol_dim-1]+[vol_dim-2]+[vol_dim-4]+[vol_dim-3])

        return _T.reshape(outdepth, outshape, ndim=symb_input.ndim).dimshuffle(shufl)
 def get_t_weights(self, t):
     """
     Generate vector of weights allowing selection of current timestep.
     (if t is not an integer, the weights will linearly interpolate)
     """
     n_seg = self.trajectory_length
     t_compare = T.arange(n_seg, dtype=theano.config.floatX).reshape((1,n_seg))
     diff = abs(T.addbroadcast(t,1) - T.addbroadcast(t_compare,0))
     t_weights = T.max(T.join(1, (-diff+1).reshape((n_seg,1)), T.zeros((n_seg,1))), axis=1)
     return t_weights.reshape((-1,1))
Esempio n. 27
0
File: util.py Progetto: 52nlp/deepy
def multiple_l2_norm(tensors):
    """
    Get the L2 norm of multiple tensors.
    This function is taken from blocks.
    """
    flattened = [T.as_tensor_variable(t).flatten() for t in tensors]
    flattened = [(t if t.ndim > 0 else t.dimshuffle('x'))
                 for t in flattened]
    joined = T.join(0, *flattened)
    return T.sqrt(T.sqr(joined).sum())
Esempio n. 28
0
 def extract_contexts_targets(self, indices_matrix, sentLengths, leftPad):
     #first pad indices_matrix with zero indices on both side
     left_padding = T.zeros((indices_matrix.shape[0], self.window), dtype=theano.config.floatX)
     right_padding = T.zeros((indices_matrix.shape[0], self.window), dtype=theano.config.floatX)
     matrix_padded = T.concatenate([left_padding, indices_matrix, right_padding], axis=1)  
     
     leftPad=leftPad+self.window   #a vector plus a number
        
     # x, y indices
     max_length=T.max(sentLengths)
     x=T.repeat(T.arange(self.batch_size), max_length)
     y=[]
     for row in range(self.batch_size):
         y.append(T.repeat((T.arange(leftPad[row], leftPad[row]+sentLengths[row]),), max_length, axis=0).flatten()[:max_length])
     y=T.concatenate(y, axis=0)   
     #construct xx, yy for context matrix
     context_x=T.repeat(T.arange(self.batch_size), max_length*self.context_size)
     #wenpeng=theano.printing.Print('context_x')(context_x)
     context_y=[]
     for i in range(self.window, 0, -1): # first consider left window
         context_y.append(y-i)
     if not self.only_left_context:
         for i in range(self.window): # first consider left window
             context_y.append(y+i+1)
     context_y_list=T.concatenate(context_y, axis=0)       
     new_shape = T.cast(T.join(0, 
                            T.as_tensor([self.context_size]),
                            T.as_tensor([self.batch_size*max_length])),
                            'int64')
     context_y_vector=T.reshape(context_y_list, new_shape, ndim=2).transpose().flatten()
     new_shape = T.cast(T.join(0, 
                            T.as_tensor([self.batch_size]),
                            T.as_tensor([self.context_size*max_length])),
                            'int64')
     
     context_matrix = T.reshape(matrix_padded[context_x,context_y_vector], new_shape, ndim=2)  
     new_shape = T.cast(T.join(0, 
                            T.as_tensor([self.batch_size]),
                            T.as_tensor([max_length])),
                            'int64') 
     target_matrix = T.reshape(matrix_padded[x,y], new_shape, ndim=2)
     return    T.cast(context_matrix, 'int64'),  T.cast(target_matrix, 'int64')
Esempio n. 29
0
def unpad_dims(output, input, leftdims, rightdims):
    """Reshapes the output after pad_dims.

    This reverts the padding by `pad_dims`.
    """
    if output.ndim == input.ndim:
        return output

    # restore the output to the original shape
    outshp = tensor.join(0, input.shape[:-rightdims], output.shape[-rightdims:])
    return GpuReshape(input.ndim)(output, outshp)
Esempio n. 30
0
def flat_join(*args):
    # Reduce all inputs to vector 
    #(https://groups.google.com/forum/#!msg/theano-users/A-RcItll8eA/z8eZyrTwX9wJ)
    join_args = []
    for i,arg in enumerate(args):
        if arg.type.ndim: # it is not a scalar
            join_args.append(arg.flatten())
        else:
            join_args.append( T.shape_padleft(arg))
            # join them into a vector
    return T.join(0, *join_args)
Esempio n. 31
0
    def __init__(self, rng, inputVar, cfgParams, copyLayer=None, layerNum=None):
        """
        Allocate a LeNetConvPoolLayer with shared variable internal parameters.

        :type rng: numpy.random.RandomState
        :param rng: a random number generator used to initialize weights

        :type inputVar: theano.tensor.dtensor4
        :param inputVar: symbolic image tensor, of shape image_shape

        :type cfgParams: ConvPoolLayerParams
        """

        assert isinstance(cfgParams, ConvPoolLayerParams)

        floatX = theano.config.floatX  # @UndefinedVariable

        filter_shape = cfgParams.filter_shape
        image_shape = cfgParams.image_shape
        filter_stride = cfgParams.stride
        poolsize = cfgParams.poolsize
        poolType = cfgParams.poolType
        activation = cfgParams.activation
        inputDim = cfgParams.inputDim
        border_mode = cfgParams.border_mode

        self.cfgParams = cfgParams
        self.layerNum = layerNum

        assert image_shape[1] == filter_shape[1]
        self.inputVar = inputVar

        # there are "num inputVar feature maps * filter height * filter width"
        # inputs to each hidden unit
        fan_in = numpy.prod(filter_shape[1:])
        # each unit in the lower layer receives a gradient from:
        # "num output feature maps * filter height * filter width" / pooling size
        fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) / numpy.prod(poolsize) / numpy.prod(filter_stride))

        if not (copyLayer is None):
            self.W = copyLayer.W
        else:
            W_bound = 1. / (fan_in + fan_out)
            wInitVals = numpy.asarray(rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), dtype=floatX)
            self.W = theano.shared(wInitVals, borrow=True, name='convW{}'.format(layerNum))

        # the bias is a 1D tensor -- one bias per output feature map
        if not (copyLayer is None):
            self.b = copyLayer.b
        else:
            b_values = numpy.zeros((filter_shape[0],), dtype=floatX) 
            self.b = theano.shared(value=b_values, borrow=True, name='convB{}'.format(layerNum))
        if border_mode == 'same':
            # convolve inputVar feature maps with filters
            conv_out = conv2d(input=inputVar,
                              filters=self.W,
                              filter_shape=filter_shape,
                              input_shape=image_shape,
                              subsample=filter_stride,
                              border_mode='full')

            # perform full convolution and crop output of input size
            offset_2 = filter_shape[2]//2
            offset_3 = filter_shape[3]//2
            conv_out = conv_out[:, :, offset_2:offset_2+image_shape[2], offset_3:offset_3+image_shape[3]]
        else:
            conv_out = conv2d(input=inputVar,
                              filters=self.W,
                              filter_shape=filter_shape,
                              input_shape=image_shape,
                              subsample=filter_stride,
                              border_mode=border_mode)

        # downsample each feature map individually, using maxpooling
        if poolType == 0:
            # using maxpooling
            if poolsize != (1, 1):
                pooled_out = pool_2d(input=conv_out, ds=poolsize, ignore_border=True)
            else:
                pooled_out = conv_out
        elif poolType == 1:
            # using average pooling
            pooled_out = theano.sandbox.neighbours.images2neibs(ten4=conv_out, neib_shape=poolsize, mode='ignore_borders').mean(axis=-1)
            new_shape = T.cast(T.join(0, conv_out.shape[:-2], T.as_tensor([conv_out.shape[2]//poolsize[0]]),
                                      T.as_tensor([conv_out.shape[3]//poolsize[1]])), 'int64')
            pooled_out = T.reshape(pooled_out, new_shape, ndim=4)
        elif poolType == -1:
            # no pooling at all
            pooled_out = conv_out

        # add the bias term. Since the bias is a vector (1D array), we first reshape it to a tensor of shape
        # (1,n_filters,1,1). Each bias will thus be broadcasted across mini-batches and feature map width & height
        lin_output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
        self.output = (lin_output if activation is None
                       else activation(lin_output))

        self.output.name = 'output_layer_{}'.format(self.layerNum)

        # store parameters of this layer
        self.params = [self.W, self.b]
        self.weights = [self.W]
Esempio n. 32
0
    def dnc_step(
        s_x_,
        s_lstm_cell_,
        s_lstm_hid_,
        s_usage_,
        s_preced_,
        s_link_,
        s_mem_,
        s_read_val_,
        s_read_wgt_,
        s_write_wgt_):
        s_states_li_ = [
            s_lstm_cell_,
            s_lstm_hid_,
            s_usage_,
            s_preced_,
            s_link_,
            s_mem_,
            s_read_val_,
            s_read_wgt_,
            s_write_wgt_]
        s_inp = T.join(-1, s_x_, s_read_val_.flatten())

        s_lstm_cell_tp1, s_lstm_hid_tp1 = lyr.lyr_lstm(
            'ctrl',
            s_inp, s_lstm_cell_, s_lstm_hid_,
            ctrl_inp_size, ctrl_wm_size
        )
        s_out, s_itrface = T.split(
            lyr.lyr_linear(
                'ctrl_out', s_lstm_hid_tp1, ctrl_wm_size, ctrl_wm_size, bias_=None),
            [OUT_DIMS,itrface_size],2, axis=-1)
        splits_len = [
            N_READS*CELL_SIZE, N_READS, CELL_SIZE, 1,
            CELL_SIZE, CELL_SIZE, N_READS, 1, 1, 3*N_READS
        ]
        s_keyr, s_strr, s_keyw, s_strw, \
            s_ers, s_write, s_freeg, s_allocg, s_writeg, s_rmode = \
            T.split(s_itrface, splits_len, 10, axis=-1)

        s_keyr = T.reshape(s_keyr, (CELL_SIZE,N_READS))
        s_strr = 1.+T.nnet.softplus(s_strr)
        s_strw = 1.+T.nnet.softplus(s_strw[0])
        s_ers = T.nnet.sigmoid(s_ers)
        s_freeg = T.nnet.sigmoid(s_freeg)
        s_allocg = T.nnet.sigmoid(s_allocg[0])
        s_writeg = T.nnet.sigmoid(s_writeg[0])
        s_rmode = T.nnet.softmax(T.reshape(s_rmode,(N_READS,3))).dimshuffle(1,0,'x')

        s_mem_retention = T.prod(
            1.-s_freeg.dimshuffle(0,'x')*s_read_wgt_, axis=0)

        s_usage_tp1 = s_mem_retention*(
            s_usage_+s_write_wgt_-s_usage_*s_write_wgt_)
        s_usage_order = T.argsort(s_usage_tp1)
        s_usage_order_inv = T.inverse_permutation(s_usage_order)
        s_usage_tp1_sorted = s_usage_tp1[s_usage_order]

        s_alloc_wgt = ((1.-s_usage_tp1_sorted)*(
            T.join(
                0,np.array([1.],dtype=th.config.floatX),
                op_cumprod_hack(s_usage_tp1_sorted[:-1])
            )))[s_usage_order_inv]

        s_content_wgt_w = T.nnet.softmax(
            s_strw*T.dot(s_mem_, s_keyw)/(
                T.sqrt(
                    EPS+T.sum(T.sqr(s_mem_),axis=-1)*T.sum(T.sqr(s_keyw))))
        ).flatten()

        s_write_wgt_tp1 = s_writeg*(
            s_allocg*s_alloc_wgt+(1.-s_allocg)*s_content_wgt_w)

        s_mem_tp1 = s_mem_*(
            1.-T.outer(s_write_wgt_tp1,s_ers))+T.outer(s_write_wgt_tp1,s_write)
        s_preced_tp1 = (1.-T.sum(s_write_wgt_))*s_preced_ + s_write_wgt_tp1

        s_link_tp1 = (
            1.-s_write_wgt_tp1-s_write_wgt_tp1.dimshuffle(0,'x')
        )*s_link_ + T.outer(s_write_wgt_tp1,s_preced_)
        s_link_tp1 = s_link_tp1 * (1.-T.identity_like(s_link_tp1))#X
        s_fwd = T.dot(s_read_wgt_, s_link_tp1.transpose())#X
        s_bwd = T.dot(s_read_wgt_, s_link_tp1)#X

        s_content_wgt_r= T.nnet.softmax(T.dot(s_mem_tp1, s_keyr)/(T.sqrt(
            EPS+T.outer(
                T.sum(T.sqr(s_mem_tp1),axis=-1),T.sum(T.sqr(s_keyr),axis=0)
            )))).transpose()
        s_read_wgt_tp1 = s_bwd*s_rmode[0]+s_content_wgt_r*s_rmode[1]+s_fwd*s_rmode[2]
        s_read_val_tp1 = T.dot(s_read_wgt_tp1, s_mem_tp1)

        s_y = s_out + lyr.lyr_linear(
            'read_out',
            s_read_val_tp1.flatten(),
            CELL_SIZE*N_READS,OUT_DIMS,
            bias_=None)
        return [
            s_y,
            s_lstm_cell_tp1,
            s_lstm_hid_tp1,
            s_usage_tp1,
            s_preced_tp1,
            s_link_tp1,
            s_mem_tp1,
            s_read_val_tp1,
            s_read_wgt_tp1,
            s_write_wgt_tp1]
Esempio n. 33
0
def jobman(_options, channel=None):

    ################### PARSE INPUT ARGUMENTS #######################
    o = parse_input_arguments(_options,
                              'RNN_theano/rnn_stream001/RNN_stream.ini')
    ####################### DEFINE THE TASK #########################

    mode = Mode(linker='cvm', optimizer='fast_run')
    rng = numpy.random.RandomState(o['seed'])
    train_set = spike_numbers(n_outs=o['n_outs'],
                              T=o['task_T'],
                              inrange=o['task_inrange'],
                              max_val=o['task_max_val'],
                              min_val=o['task_min_val'],
                              batches=o['task_train_batches'],
                              batch_size=o['task_train_batchsize'],
                              noise=o['task_noise'],
                              rng=rng)

    valid_set = spike_numbers(n_outs=o['n_outs'],
                              T=o['task_T'],
                              inrange=o['task_inrange'],
                              max_val=o['task_max_val'],
                              min_val=o['task_min_val'],
                              batches=o['task_valid_batches'],
                              batch_size=o['task_valid_batchsize'],
                              rng=rng)

    test_set = spike_numbers(n_outs=o['n_outs'],
                             T=o['task_T'],
                             inrange=o['task_inrange'],
                             max_val=o['task_max_val'],
                             min_val=o['task_min_val'],
                             batches=o['task_test_batches'],
                             batch_size=o['task_test_batchsize'],
                             rng=rng)
    if o['wout_pinv']:
        wout_set = spike_numbers(n_outs=o['n_outs'],
                                 T=o['task_T'],
                                 inrange=o['task_inrange'],
                                 max_val=o['task_max_val'],
                                 min_val=o['task_min_val'],
                                 batches=o['task_wout_batches'],
                                 batch_size=o['task_wout_batchsize'],
                                 noise=o['task_wout_noise'],
                                 rng=rng)

    ###################### DEFINE THE MODEL #########################

    def recurrent_fn(u_t, h_tm1, W_hh, W_ux, W_hy, b):
        x_t = TT.dot(W_ux, u_t)
        h_t = TT.tanh(TT.dot(W_hh, h_tm1) + x_t + b)
        y_t = TT.dot(W_hy, h_t)
        return h_t, y_t

    u = TT.tensor3('u')
    if o['error_over_all']:
        t = TT.tensor3('t')
    else:
        t = TT.matrix('t')
    h0 = TT.matrix('h0')
    b = shared_shape(
        floatX(
            numpy.random.uniform(size=(o['nhid'], ),
                                 low=-o['Wux_properties']['scale'],
                                 high=o['Wux_properties']['scale'])))

    alpha = TT.scalar('alpha')
    lr = TT.scalar('lr')

    W_hh = init(o['nhid'], o['nhid'], 'W_hh', o['Whh_style'],
                o['Whh_properties'], rng)

    W_ux = init(o['nhid'], train_set.n_ins, 'W_ux', o['Wux_style'],
                o['Wux_properties'], rng)

    W_hy = init(o['n_outs'], o['nhid'], 'W_hy', o['Why_style'],
                o['Why_properties'], rng)
    [h, y
     ], _ = theano.scan(recurrent_fn,
                        sequences=u,
                        outputs_info=[h0, None],
                        non_sequences=[W_hh, W_ux, W_hy,
                                       TT.shape_padright(b)],
                        name='recurrent_fn',
                        mode=mode)

    init_h = h.owner.inputs[0].owner.inputs[2]

    #h = theano.printing.Print('h',attrs=('shape',))(h)
    if o['error_over_all']:
        out_err = TT.mean(TT.mean((y - t)**2, axis=0), axis=1)
        err = out_err.mean()
    else:
        out_err = ((y[-1] - t)**2).mean(axis=1)
        err = out_err.mean()
    # Regularization term
    if o['reg_projection'] == 'h[-1]':
        cost = h[-1].sum()
    elif o['reg_projection'] == 'err':
        cost = err
    elif o['reg_projection'] == 'random':
        trng = TT.shared_randomstreams.RandomStreams(rng.randint(1e6))
        proj = trng.uniform(size=h[-1].shape)
        if o['sum_h2'] > 0:
            proj = TT.join(0, proj[:o['sum_h2']],
                           TT.zeros_like(proj[o['sum_h2']:]))
        cost = TT.sum(proj * h[-1])

    z, gh = TT.grad(cost, [init_h, h])
    z.name = '__z__'
    z = z[:-1] - gh
    if o['sum_h'] > 0:
        z2 = TT.sum(z[:, :o['sum_h']]**2, axis=1)
    else:
        z2 = TT.sum(z**2, axis=1)
    v1 = z2[:-1]
    v2 = z2[1:]
    ## ## v2 = theano.printing.Print('v2')(v2)
    # floatX(1e-14)
    ratios = TT.switch(TT.ge(v2, 1e-12), TT.sqrt(v1 / v2), floatX(1))
    norm_0 = TT.ones_like(ratios[0])
    norm_t, _ = theano.scan(lambda x, y: x * y,
                            sequences=ratios,
                            outputs_info=norm_0,
                            name='jacobian_products',
                            mode=mode)
    norm_term = TT.sum(TT.mean(norm_t, axis=1))
    if o['reg_cost'] == 'product':
        r = TT.mean(abs(TT.log(norm_t)), axis=1).sum()
    elif o['reg_cost'] == 'each':
        r = TT.mean(abs(TT.log(ratios)), axis=1).sum()
    elif o['reg_cost'] == 'product2':
        ratios2 = TT.switch(TT.ge(z2[-1], 1e-12), TT.sqrt(z2 / z2[-1]),
                            floatX(1))
        r = TT.mean(abs(TT.log(ratios2)), axis=1).sum()

    ratios = TT.switch(TT.ge(v2, 1e-12), TT.sqrt(v1 / v2), floatX(1e-12))[::-1]
    norm_0 = TT.ones_like(ratios[0])
    norm_t, _ = theano.scan(lambda x, y: x * y,
                            sequences=ratios,
                            outputs_info=norm_0,
                            name='jacobian_products',
                            mode=mode)
    norm_term = floatX(0.1) + TT.sum(TT.mean(norm_t, axis=1))
    gu = TT.grad(y[-1].sum(), u)

    if o['opt_alg'] == 'sgd':
        get_updates = lambda p, e, up: (sgd(
            p, e, lr=lr, scale=my1 / norm_term, updates=up)[0], [[], [
            ], [TT.constant(0) for x in p]])
    elif o['opt_alg'] == 'sgd_qn':
        get_updates = lambda p, e, up: sgd_qn(p,
                                              e,
                                              mylambda=floatX(o['mylambda']),
                                              t0=floatX(o['t0']),
                                              skip=floatX(o['skip']),
                                              scale=my1 / norm_term,
                                              lazy=o['lazy'],
                                              updates=up)

    if o['win_reg']:
        updates, why_extra = get_updates([W_hy], err, {})
        cost = err + alpha * r
        updates, extras = get_updates([W_ux, W_hh, b], cost, updates)
        b_Why = why_extra[2][0]
        b_Wux = extras[2][0]
        b_Whh = extras[2][1]
        b_b = extras[2][2]
    else:
        updates, extras1 = get_updates([W_hy, W_ux], err, {})
        cost = err + alpha * r
        updates, extras2 = get_updates([W_hh, b], cost, updates)
        b_Why = extras1[2][0]
        b_Wux = extras1[2][1]
        b_Whh = extras2[2][0]
        b_b = extras2[2][1]

    nhid = o['nhid']
    train_batchsize = o['task_train_batchsize']
    valid_batchsize = o['task_valid_batchsize']
    test_batchsize = o['task_test_batchsize']
    wout_batchsize = o['task_wout_batchsize']

    train_h0 = shared_shape(floatX(numpy.zeros((nhid, train_batchsize))))
    valid_h0 = shared_shape(floatX(numpy.zeros((nhid, valid_batchsize))))
    test_h0 = shared_shape(floatX(numpy.zeros((nhid, test_batchsize))))
    wout_h0 = shared_shape(floatX(numpy.zeros((nhid, wout_batchsize))))
    idx = TT.iscalar('idx')
    train_u, train_t = train_set(idx)
    u.tag.shape = copy.copy(train_u.tag.shape)
    t.tag.shape = copy.copy(train_t.tag.shape)
    train = theano.function([u, t, lr, alpha], [out_err, r, norm_term],
                            updates=updates,
                            mode=mode,
                            givens={h0: train_h0})

    valid_u, valid_t = valid_set(idx)
    u.tag.shape = copy.copy(valid_u.tag.shape)
    t.tag.shape = copy.copy(valid_t.tag.shape)
    valid = theano.function([u, t], [out_err, r, norm_term],
                            mode=mode,
                            givens={h0: valid_h0})

    test_u, test_t = test_set(idx)
    u.tag.shape = copy.copy(test_u.tag.shape)
    t.tag.shape = copy.copy(test_t.tag.shape)
    test = theano.function([u, t], [
        out_err, r, norm_term, W_hh, W_ux, W_hy, b, z, y, h, u, gu, t, b_Whh,
        b_Wux, b_Why, b_b
    ],
                           mode=mode,
                           givens={h0: test_h0})
    if o['wout_pinv']:
        wout_u, wout_t = wout_set.get_whole_tensors()

        def wiener_hopf_fn(u_t, t_t, H_tm1, Y_tm1, W_hh, W_ux, b, h0):
            def recurrent_fn(u_t, h_tm1, W_hh, W_ux, b):
                x_t = TT.dot(W_ux, u_t)
                h_t = TT.tanh(TT.dot(W_hh, h_tm1) + x_t + b)
                return h_t

            h_t, _ = theano.scan(recurrent_fn,
                                 sequences=u_t,
                                 outputs_info=h0,
                                 non_sequences=[W_hh, W_ux, b],
                                 name='recurrent_fn',
                                 mode=mode)
            H_t = H_tm1 + TT.dot(h_t[-1], h_t[-1].T)
            Y_t = Y_tm1 + TT.dot(h_t[-1], t_t.T)
            return H_t, Y_t

        H_0 = shared_shape(numpy.zeros((o['nhid'], o['nhid']),
                                       dtype=theano.config.floatX),
                           name='H0')
        Y_0 = shared_shape(numpy.zeros((o['nhid'], o['n_outs']),
                                       dtype=theano.config.floatX),
                           name='Y0')
        all_u = TT.tensor4('whole_u')
        all_t = TT.tensor3('whole_t')
        [H, Y], _ = theano.scan(
            wiener_hopf_fn,
            sequences=[all_u, all_t],
            outputs_info=[H_0, Y_0],
            non_sequences=[W_hh, W_ux, TT.shape_padright(b), h0],
            name='wiener_hopf_fn',
            mode=mode)
        length = TT.cast(all_u.shape[0] * all_u.shape[3],
                         dtype=theano.config.floatX)
        H = H[-1] / length
        Y = Y[-1] / length
        H = H + floatX(o['wiener_lambda']) * TT.eye(o['nhid'])
        W_hy_solve = theano_linalg.solve(H, Y).T
        wout = theano.function([idx], [],
                               mode=mode,
                               updates={W_hy: W_hy_solve},
                               givens={
                                   all_u: wout_u,
                                   all_t: wout_t,
                                   h0: wout_h0
                               })
    '''
    theano.printing.pydotprint(train, 'train.png', high_contrast=True,
                               with_ids= True)
    for idx,node in enumerate(train.maker.env.toposort()):
        if node.op.__class__.__name__ == 'Scan':
            theano.printing.pydotprint(node.op.fn,
                                       ('train%d_'%idx)+node.op.name,
                                       high_contrast = True,
                                       with_ids = True)

    theano.printing.pydotprint(train, 'valid.png', high_contrast=True,
                              with_ids = True)
    for idx,node in enumerate(train.maker.env.toposort()):
        if node.op.__class__.__name__ == 'Scan':
            theano.printing.pydotprint(node.op.fn,
                                       ('valid%d_'%idx)+node.op.name,
                                       high_contrast = True,
                                      with_ids = True)
    theano.printing.pydotprint(train, 'test.png', high_contrast=True,
                              with_ids = True)
    for idx,node in enumerate(train.maker.env.toposort()):
        if node.op.__class__.__name__ == 'Scan':
            theano.printing.pydotprint(node.op.fn,
                                       ('test%d_'%idx)+node.op.name,
                                       high_contrast = True,
                                      with_ids = True)
    if o['wout_pinv']:
        theano.printing.pydotprint(train, 'wout.png', high_contrast=True,
                                  with_ids = True)
        for idx,node in enumerate(train.maker.env.toposort()):
            if node.op.__class__.__name__ == 'Scan':
                theano.printing.pydotprint(node.op.fn,
                                       ('wout%d_'%idx)+node.op.name,
                                       high_contrast = True,
                                          with_ids= True)

    '''
    valid_set.refresh()

    #import GPUscan.ipdb; GPUscan.ipdb.set_trace()
    #rval = valid(valid_set.data_u[0],valid_set.data_t[0])

    #################### DEFINE THE MAIN LOOP #######################

    data = {}
    fix_len = o['max_storage_numpy']  #int(o['NN']/o['small_step'])
    avg_train_err = numpy.zeros((o['small_step'], o['n_outs']))
    avg_train_reg = numpy.zeros((o['small_step'], ))
    avg_train_norm = numpy.zeros((o['small_step'], ))
    avg_valid_err = numpy.zeros((o['small_step'], o['n_outs']))
    avg_valid_reg = numpy.zeros((o['small_step'], ))
    avg_valid_norm = numpy.zeros((o['small_step'], ))

    data['options'] = o
    data['train_err'] = -1 * numpy.ones((fix_len, o['n_outs']))
    data['valid_err'] = -1 * numpy.ones((fix_len, o['n_outs']))
    data['train_reg'] = -1 * numpy.ones((fix_len, ))
    data['valid_reg'] = -1 * numpy.ones((fix_len, ))
    data['train_norm'] = numpy.zeros((fix_len, ))
    data['valid_norm'] = numpy.zeros((fix_len, ))

    data['test_err'] = [None] * o['max_storage']
    data['test_idx'] = [None] * o['max_storage']
    data['test_reg'] = [None] * o['max_storage']
    data['test_norm'] = [None] * o['max_storage']
    data['y'] = [None] * o['max_storage']
    data['z'] = [None] * o['max_storage']
    data['t'] = [None] * o['max_storage']
    data['h'] = [None] * o['max_storage']
    data['u'] = [None] * o['max_storage']
    data['gu'] = [None] * o['max_storage']
    data['W_hh'] = [None] * o['max_storage']
    data['W_ux'] = [None] * o['max_storage']
    data['W_hy'] = [None] * o['max_storage']
    data['b'] = [None] * o['max_storage']
    data['b_ux'] = [None] * o['max_storage']
    data['b_hy'] = [None] * o['max_storage']
    data['b_hh'] = [None] * o['max_storage']
    data['b_b'] = [None] * o['max_storage']
    storage_exceeded = False
    stop = False

    old_rval = numpy.inf
    patience = o['patience']
    n_train = o['task_train_batches']
    n_valid = o['task_valid_batches']
    n_test = o['task_test_batches']
    n_test_runs = 0
    test_pos = 0

    valid_set.refresh()
    test_set.refresh()
    kdx = 0
    lr_v = floatX(o['lr'])
    alpha_v = floatX(o['alpha'])
    lr_f = 1
    if o['lr_scheme']:
        lr_f = o['lr_scheme'][1] / (o['NN'] - o['lr_scheme'][0])
    alpha_r = 1
    if o['alpha_scheme']:
        alpha_r = float(o['alpha_scheme'][1] - o['alpha_scheme'][0])

    st = time.time()
    if channel:
        try:
            channel.save()
        except:
            pass
    for idx in xrange(int(o['NN'])):
        if o['lr_scheme'] and idx > o['lr_scheme'][0]:
            lr_v = floatX(o['lr'] * 1. / (1. +
                                          (idx - o['lr_scheme'][0]) * lr_f))
        if o['alpha_scheme']:
            if idx < o['alpha_scheme'][0]:
                alpha_v = floatX(0)
            elif idx < o['alpha_scheme'][1]:
                pos = 2. * (idx - o['alpha_scheme'][0]) / alpha_r - 1.
                alpha_v = floatX(numpy.exp(-pos**2 / 0.2) * o['alpha'])
            else:
                alpha_v = floatX(0)

        jdx = idx % o['small_step']
        avg_train_err[jdx, :] = 0
        avg_train_reg[jdx] = 0
        avg_train_norm[jdx] = 0

        avg_valid_err[jdx, :] = 0
        avg_valid_reg[jdx] = 0
        avg_valid_norm[jdx] = 0

        if o['wout_pinv'] and (idx % o['test_step'] == 0):
            wout_set.refresh()
            print(
                '* Re-computing W_hy using closed-form '
                'regularized wiener hopf formula')
            st_wout = time.time()
            wout(0)
            ed_wout = time.time()
            print '** It took ', ed_wout - st_wout, 'secs'
            print '** Average weight', abs(W_hy.get_value(borrow=True)).mean()

        print '*Re-generate training set '
        st_gen = time.time()
        train_set.refresh()
        print '**Generation took', time.time() - st_gen, 'secs'
        for k in xrange(o['task_train_batches']):
            rval = train(train_set.data_u[k], train_set.data_t[k], lr_v,
                         alpha_v)
            print '[',idx,'/',patience,'][',k,'/',n_train,'][train]', rval[0].mean(), \
                    rval[1], rval[2], (1./rval[2])*lr_v, alpha_v
            avg_train_err[jdx, :] += rval[0]
            avg_train_reg[jdx] += rval[1]
            avg_train_norm[jdx] += rval[2]
        train_set.clean()
        print '**Epoch took', time.time() - st, 'secs'
        avg_train_err[jdx] /= n_train
        avg_train_reg[jdx] /= n_train
        avg_train_norm[jdx] /= n_train
        st = time.time()

        for k in xrange(n_valid):
            rval = valid(valid_set.data_u[k], valid_set.data_t[k])
            print '[',idx,'/',patience,'][',k,'/',n_valid,'][valid]', rval[0].mean(), \
                    rval[1], rval[2]
            avg_valid_err[jdx] += rval[0]
            avg_valid_reg[jdx] += rval[1]
            avg_valid_norm[jdx] += rval[2]

        avg_valid_err[jdx] /= n_valid
        avg_valid_reg[jdx] /= n_valid
        avg_valid_norm[jdx] /= n_valid
        if idx >= o['small_step'] and idx % o['small_step'] == 0:
            kdx += 1
            if kdx >= o['max_storage_numpy']:
                kdx = o['max_storage_numpy'] // 3
                storage_exceeded = True

            data['steps'] = idx
            data['kdx'] = kdx
            data['storage_exceeded'] = storage_exceeded
            data['train_err'][kdx] = avg_train_err.mean()
            data['valid_err'][kdx] = avg_valid_err.mean()
            data['train_reg'][kdx] = avg_train_reg.mean()
            data['valid_reg'][kdx] = avg_valid_reg.mean()
            data['train_norm'][kdx] = avg_train_norm.mean()
            data['valid_norm'][kdx] = avg_valid_norm.mean()
            if channel:
                try:
                    _options['trainerr'] = data['train_err'][kdx].mean()
                    _options['maxtrainerr'] = data['train_err'][kdx].max()
                    _options['trainreg'] = data['train_reg'][kdx]
                    _options['trainnorm'] = data['train_norm'][kdx]
                    _options['validerr'] = data['valid_err'][kdx].mean()
                    _options['maxvaliderr'] = data['valid_err'][kdx].max()
                    _options['validreg'] = data['valid_reg'][kdx]
                    _options['validnorm'] = data['valid_norm'][kdx]
                    _options['steps'] = idx
                    _options['patience'] = patience
                    channel.save()
                except:
                    pass

                test_err = []
                test_reg = []
                test_norm = []

                for k in xrange(n_test):
                    rval = test(test_set.data_u[k], test_set.data_t[k])
                    print '[',idx,'][',k,'/',n_test,'][test]',rval[0].mean()\
                        , rval[1], rval[2]
                    test_err += [rval[0]]
                    test_reg += [rval[1]]
                    test_norm += [rval[2]]
                    test_z = rval[7][:, :, :10]
                    test_y = rval[8][:, :, :10]
                    test_h = rval[9][:, :, :10]
                    test_u = rval[10][:, :, :10]
                    test_gu = rval[11][:, :, :10]
                    test_t = rval[12][:, :10]
                data['test_idx'][test_pos] = idx
                data['test_pos'] = test_pos
                data['y'][test_pos] = test_y
                data['z'][test_pos] = test_z
                data['t'][test_pos] = test_t
                data['h'][test_pos] = test_h
                data['u'][test_pos] = test_u
                data['gu'][test_pos] = test_gu
                data['test_err'][test_pos] = test_err
                data['test_reg'][test_pos] = test_reg
                data['test_norm'][test_pos] = test_norm
                data['W_hh'][test_pos] = rval[3]
                data['W_ux'][test_pos] = rval[4]
                data['W_hy'][test_pos] = rval[5]
                data['b'][test_pos] = rval[6]
                data['b_hh'][test_pos] = rval[13]
                data['b_ux'][test_pos] = rval[14]
                data['b_hy'][test_pos] = rval[15]
                data['b_b'][test_pos] = rval[16]
            cPickle.dump(
                data,
                open(
                    os.path.join(configs.results_folder(), o['path'],
                                 '%s_backup.pkl' % o['name']), 'wb'))

        print '** ', avg_valid_err[jdx].mean(), ' < ', old_rval, ' ? '
        if avg_valid_err[jdx].mean() < old_rval:

            patience += o['patience_incr']
            if avg_valid_err[jdx].mean() < old_rval * 0.997:

                test_err = []
                test_reg = []
                test_norm = []

                for k in xrange(n_test):
                    rval = test(test_set.data_u[k], test_set.data_t[k])
                    print '[',idx,'][',k,'/',n_test,'][test]',rval[0].mean()\
                        , rval[1], rval[2]
                    test_err += [rval[0]]
                    test_reg += [rval[1]]
                    test_norm += [rval[2]]
                    test_z = rval[7][:, :, :10]
                    test_y = rval[8][:, :, :10]
                    test_h = rval[9][:, :, :10]
                    test_u = rval[10][:, :, :10]
                    test_gu = rval[11][:, :, :10]
                    test_t = rval[12][:, :10]
                data['test_idx'][test_pos] = idx
                data['test_pos'] = test_pos
                data['y'][test_pos] = test_y
                data['z'][test_pos] = test_z
                data['t'][test_pos] = test_t
                data['h'][test_pos] = test_h
                data['u'][test_pos] = test_u
                data['gu'][test_pos] = test_gu
                data['test_err'][test_pos] = test_err
                data['test_reg'][test_pos] = test_reg
                data['test_norm'][test_pos] = test_norm
                data['W_hh'][test_pos] = rval[3]
                data['W_ux'][test_pos] = rval[4]
                data['W_hy'][test_pos] = rval[5]
                data['b'][test_pos] = rval[6]
                data['b_hh'][test_pos] = rval[13]
                data['b_ux'][test_pos] = rval[14]
                data['b_hy'][test_pos] = rval[15]
                data['b_b'][test_pos] = rval[16]

                cPickle.dump(
                    data,
                    open(
                        os.path.join(configs.results_folder(), o['path'],
                                     '%s.pkl' % o['name']), 'wb'))
                n_test_runs += 1
                test_pos += 1
                if test_pos >= o['max_storage']:
                    test_pos = test_pos - o['go_back']
                if numpy.mean(test_err) < 5e-5:
                    patience = idx - 5
                    break

            old_rval = avg_valid_err[jdx].mean()
        if idx > patience:
            break
Esempio n. 34
0
def max_pool_3d(input, ds, ignore_border=False):
    """
    Takes as input a N-D tensor, where N >= 3. It downscales the input video by
    the specified factor, by keeping only the maximum value of non-overlapping
    patches of size (ds[0],ds[1],ds[2]) (time, height, width)

    :type input: N-D theano tensor of input images.
    :param input: input images. Max pooling will be done over the 3 last dimensions.
    :type ds: tuple of length 3
    :param ds: factor by which to downscale. (2,2,2) will halve the video in each dimension.
    :param ignore_border: boolean value. When True, (5,5,5) input with ds=(2,2,2) will generate a
      (2,2,2) output. (3,3,3) otherwise.
    """

    if input.ndim < 3:
        raise NotImplementedError('max_pool_3d requires a dimension >= 3')

    # extract nr dimensions
    vid_dim = input.ndim
    # max pool in two different steps, so we can use the 2d implementation of
    # downsamplefactormax. First maxpool frames as usual.
    # Then maxpool the time dimension. Shift the time dimension to the third
    # position, so rows and cols are in the back

    # extract dimensions
    frame_shape = input.shape[-2:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = T.prod(input.shape[:-2])
    batch_size = T.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = T.cast(T.join(0, batch_size, T.as_tensor([
        1,
    ]), frame_shape), 'int32')
    input_4D = T.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of videos in rows and cols
    output = T.signal.pool.pool_2d(input_4D, (ds[1], ds[2]), ignore_border)
    # restore to original shape
    outshape = T.join(0, input.shape[:-2], output.shape[-2:])
    out = T.reshape(output, outshape, ndim=input.ndim)

    # now maxpool time

    # output (time, rows, cols), reshape so that time is in the back
    shufl = (list(range(vid_dim - 3)) + [vid_dim - 2] + [vid_dim - 1] +
             [vid_dim - 3])
    input_time = out.dimshuffle(shufl)
    # reset dimensions
    vid_shape = input_time.shape[-2:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = T.prod(input_time.shape[:-2])
    batch_size = T.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,width,time)
    new_shape = T.cast(T.join(0, batch_size, T.as_tensor([
        1,
    ]), vid_shape), 'int32')
    input_4D_time = T.reshape(input_time, new_shape, ndim=4)
    # downsample mini-batch of videos in time
    outtime = T.signal.pool.pool_2d(input_4D_time, (1, ds[0]), ignore_border)
    # output
    # restore to original shape (xxx, rows, cols, time)
    outshape = T.join(0, input_time.shape[:-2], outtime.shape[-2:])
    shufl = (list(range(vid_dim - 3)) + [vid_dim - 1] + [vid_dim - 3] +
             [vid_dim - 2])
    return T.reshape(outtime, outshape, ndim=input.ndim).dimshuffle(shufl)
Esempio n. 35
0
    def __init__(self,
                 numpy_rng=None,
                 theano_rng=None,
                 cfg=[],
                 non_maximum_erasing=False,
                 use_fast=False):

        self.conv_layers = []
        self.n_outs = cfg.n_outs
        self.layers = []
        self.extra_layers = []
        self.conv_layer_num = len(cfg.conv_layer_configs)
        self.dnn_layer_num = len(cfg.hidden_layers_sizes)
        self.extra_layers_sizes = cfg.extra_layers_sizes

        self.x = T.tensor4('x')
        self.extra_x = T.matrix('extra_x')

        for i in xrange(self.conv_layer_num):
            if i == 0:
                input = self.x
            else:
                input = self.conv_layers[-1].output
            config = cfg.conv_layer_configs[i]
            print config['filter_shape']
            conv_layer = ConvLayerForward(numpy_rng=numpy_rng,
                                          input=input,
                                          filter_shape=config['filter_shape'],
                                          poolsize=config['poolsize'],
                                          activation=config['activation'],
                                          flatten=config['flatten'],
                                          use_fast=use_fast)
            self.layers.append(conv_layer)
            self.conv_layers.append(conv_layer)
        self.conv_output_dim = config['output_shape'][1] * config[
            'output_shape'][2] * config['output_shape'][3]
        cfg.n_ins = config['output_shape'][1] * config['output_shape'][
            2] * config['output_shape'][3]

        print self.conv_output_dim
        print cfg.n_ins
        print 'Extra input dimension: ' + str(cfg.extra_dim)
        for i in xrange(len(self.extra_layers_sizes)):
            if i == 0:
                input_size = cfg.extra_dim
                layer_input = self.extra_x
            else:
                input_size = self.extra_layers_sizes[i - 1]
                layer_input = self.extra_layers[-1].output
            W = None
            b = None
            attend_layer = HiddenLayer(rng=numpy_rng,
                                       input=layer_input,
                                       n_in=input_size,
                                       n_out=self.extra_layers_sizes[i],
                                       W=W,
                                       b=b)
            self.extra_layers.append(attend_layer)
        self.extra_output = self.extra_layers[-1].output
        self.extra_output = T.nnet.softmax(self.extra_layers[-1].output)

        print 'layer num: ' + str(len(self.layers) - 1)
        for i in xrange(self.dnn_layer_num):
            if i == 0:
                # 1. Join two features (magnitude + phase)
                input_size = self.conv_output_dim + self.extra_layers_sizes[-1]
                layer_input = T.join(1, self.layers[-1].output,
                                     self.extra_output)
                # 2. Weighted Sum (magnitude * phase)
                #input_size = self.conv_output_dim
                #layer_input = self.layers[-1].output * self.extra_output
            else:
                input_size = cfg.hidden_layers_sizes[i - 1]
                layer_input = self.layers[-1].output
            W = None
            b = None
            hidden_layer = HiddenLayer(rng=numpy_rng,
                                       input=layer_input,
                                       n_in=input_size,
                                       n_out=cfg.hidden_layers_sizes[i],
                                       W=W,
                                       b=b)
            self.layers.append(hidden_layer)

        print 'layer num: ' + str(len(self.layers) - 1)
        logLayer = OutputLayer(input=self.layers[-1].output,
                               n_in=cfg.hidden_layers_sizes[-1],
                               n_out=self.n_outs)
        self.layers.append(logLayer)
        print 'layer num: ' + str(len(self.layers) - 1)
Esempio n. 36
0
def maxpool_3D(input, ds, ignore_border=False):

    #input.dimshuffle (0, 2, 1, 3, 4)   # convert to make video in back.
    # no need to reshuffle.
    if input.ndim < 3:
        raise NotImplementedError('max_pool_3d requires a dimension >= 3')

    # extract nr dimensions
    vid_dim = input.ndim
    # max pool in two different steps, so we can use the 2d implementation of
    # downsamplefactormax. First maxpool frames as usual.
    # Then maxpool the time dimension. Shift the time dimension to the third
    # position, so rows and cols are in the back

    # extract dimensions
    frame_shape = input.shape[-2:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = T.prod(input.shape[:-2])
    batch_size = T.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = T.cast(T.join(0, batch_size, T.as_tensor([
        1,
    ]), frame_shape), 'int32')
    input_4D = T.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of videos in rows and cols
    op = DownsampleFactorMax(
        (ds[1], ds[2]), ignore_border
    )  # so second and third dimensions of ds are for height and width
    output = op(input_4D)
    # restore to original shape
    outshape = T.join(0, input.shape[:-2], output.shape[-2:])
    out = T.reshape(output, outshape, ndim=input.ndim)

    # now maxpool time
    # output (time, rows, cols), reshape so that time is in the back
    shufl = (list(range(vid_dim - 3)) + [vid_dim - 2] + [vid_dim - 1] +
             [vid_dim - 3])
    input_time = out.dimshuffle(shufl)
    # reset dimensions
    vid_shape = input_time.shape[-2:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = T.prod(input_time.shape[:-2])
    batch_size = T.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,width,time)
    new_shape = T.cast(T.join(0, batch_size, T.as_tensor([
        1,
    ]), vid_shape), 'int32')
    input_4D_time = T.reshape(input_time, new_shape, ndim=4)
    # downsample mini-batch of videos in time
    op = DownsampleFactorMax(
        (1, ds[0]), ignore_border)  # Here the time dimension is downsampled.
    outtime = op(input_4D_time)
    # output
    # restore to original shape (xxx, rows, cols, time)
    outshape = T.join(0, input_time.shape[:-2], outtime.shape[-2:])
    shufl = (list(range(vid_dim - 3)) + [vid_dim - 1] + [vid_dim - 3] +
             [vid_dim - 2])
    #rval = T.reshape(outtime, outshape, ndim=input.ndim).dimshuffle(shufl)
    return T.reshape(outtime, outshape, ndim=input.ndim).dimshuffle(shufl)
Esempio n. 37
0
    def __init__(self,
                 numpy_rng=None,
                 theano_rng=None,
                 cfg=None,
                 non_maximum_erasing=False,
                 use_fast=False):

        self.n_outs = cfg.n_outs
        self.layers = []
        self.extra_layers = []
        self.conv_layer_num = len(cfg.conv_layer_configs)
        self.dnn_layer_num = len(cfg.hidden_layers_sizes)
        self.extra_layers_sizes = cfg.extra_layers_sizes

        self.x = T.tensor4('x')
        self.extra_x = T.matrix('extra_x')

        for i in xrange(self.conv_layer_num):
            if i == 0:
                input = self.x
            else:
                input = self.layers[-1].output
            config = cfg.conv_layer_configs[i]
            conv_layer = ConvLayerForward(numpy_rng=numpy_rng,
                                          input=input,
                                          filter_shape=config['filter_shape'],
                                          poolsize=config['poolsize'],
                                          activation=config['activation'],
                                          flatten=config['flatten'],
                                          use_fast=use_fast)
            self.layers.append(conv_layer)

        self.conv_output_dim = config['output_shape'][1] * config[
            'output_shape'][2] * config['output_shape'][3]
        cfg.n_ins = config['output_shape'][1] * config['output_shape'][
            2] * config['output_shape'][3]

        for i in xrange(len(self.extra_layers_sizes)):
            if i == 0:
                input_size = 6400 * 5
                input_size = cfg.extra_dim
                layer_input = self.extra_x
            else:
                input_size = self.extra_layers_sizes[i - 1]
                layer_input = self.extra_layers[-1].output
            W = None
            b = None
            attend_layer = HiddenLayer(rng=numpy_rng,
                                       input=layer_input,
                                       n_in=input_size,
                                       n_out=self.extra_layers_sizes[i],
                                       W=W,
                                       b=b)
            self.extra_layers.append(attend_layer)

        self.extra_layers[-1].att_e_tl = self.extra_layers[-1].output
        self.extra_layers[-1].att_a_tl = T.nnet.softmax(
            self.extra_layers[-1].att_e_tl)
        #self.extra_layers[-1].att_a_tl = T.exp(self.extra_layers[-1].att_e_tl)/(T.exp(self.extra_layers[-1].att_e_tl)).sum(0,keepdims=True)

        for i in xrange(self.dnn_layer_num):
            if i == 0:
                #input_size = self.conv_output_dim
                #layer_input = (self.extra_layers[-1].att_a_tl*self.layers[-1].output)
                input_size = self.conv_output_dim + self.extra_layers_sizes[-1]
                layer_input = T.join(1, self.extra_layers[-1].att_a_tl,
                                     self.layers[-1].output)
            else:
                input_size = cfg.hidden_layers_sizes[i - 1]
                layer_input = self.layers[-1].output
            W = None
            b = None
            hidden_layer = HiddenLayer(rng=numpy_rng,
                                       input=layer_input,
                                       n_in=input_size,
                                       n_out=cfg.hidden_layers_sizes[i],
                                       W=W,
                                       b=b)
            self.layers.append(hidden_layer)

        logLayer = OutputLayer(input=self.layers[-1].output,
                               n_in=cfg.hidden_layers_sizes[-1],
                               n_out=self.n_outs)
        self.layers.append(logLayer)
Esempio n. 38
0
def lyr_gru_nogate(name_, s_x_, s_state_, idim_, sdim_, lyr_linear_, axis_=-1):
    s_interp_lin, s_state_tp1_lin = T.split(
        lyr_linear_(name_ + '_main', T.join(axis_, s_x_, s_state_),
                    idim_ + sdim_, sdim_ * 2), [sdim_] * 2, 2, axis_)
    s_interp = T.nnet.sigmoid(s_interp_lin)
    return T.tanh(s_state_tp1_lin) * s_interp + s_state_ * (1. - s_interp)
Esempio n. 39
0
def test_kmax():
    nbatches, nkernels_in, nwords, ndim = 3, 1, 7, 2
    input_shape = (nbatches, nkernels_in, nwords, ndim)
    image_data = np.ones(input_shape, dtype=np.float64)

    image_data = np.random.rand(*input_shape)
    input = theano.shared(image_data)

    # sent_sizes_data = np.array([3, 2, 3, 2, 4, 5, 3])[:,np.newaxis].astype('int32')
    # sent_sizes = theano.shared(sent_sizes_data, borrow=True)
    # sent_sizes_matrix = T.repeat(sent_sizes, ndim, axis=1)
    # print 'sent_sizes_matrix', sent_sizes_matrix.eval()

    sent_sizes_data = np.random.randint(1, 5, size=(nbatches, 1))
    sent_sizes = theano.shared(sent_sizes_data, borrow=True)
    sent_sizes_matrix = T.repeat(sent_sizes, nwords, axis=1)
    print 'sent_sizes_matrix'
    print sent_sizes_matrix.eval()

    idx = T.arange(nwords).dimshuffle('x', 0)
    idx_matrix = T.repeat(idx, nbatches, axis=0)
    print 'idx_matrix'
    print idx_matrix.eval()

    sent_sizes_mask = T.lt(idx_matrix, sent_sizes_matrix)
    print 'sent_sizes_mask'
    print sent_sizes_mask.eval()

    k_max = 4
    # f_kmax = theano.function([input], kmax_pool(input, k))
    # k = theano.shared(k_max, name='k-max')
    # kmax_limit = nwords * T.ceil(L-l)/L
    # Unroll input into 2d ndim x (batch_size x nkernels_in x nwords)
    # pool = TSN.images2neibs(input, (input.shape[2], 1), mode='ignore_borders')
    print 'input', input.eval()
    neighborsArgSorted = T.argsort(input, axis=2)
    print 'neighborsArgSorted'
    print neighborsArgSorted.eval()
    neighborsArgSorted_masked = (neighborsArgSorted *
                                 sent_sizes_mask.dimshuffle(0, 'x', 1, 'x'))

    print 'neighborsArgSorted_masked'
    print neighborsArgSorted_masked.eval()

    neighborsArgSorted_clipped = (
        neighborsArgSorted *
        sent_sizes_mask.dimshuffle(0, 'x', 1, 'x'))[:, :, :k_max, :]

    print 'args'
    print neighborsArgSorted_clipped.eval()
    return
    # Given a column of sentence length
    # Tile it along axis=1 to form a matrix
    # Create another matrix with T.arange() to represent indices
    # do T.lt to create a mask and then eliminate all indices in the neighborsArgSorted

    # yy = T.sort(neighborsArgSorted[:, -k:], axis=1).flatten()
    yy = T.sort(neighborsArgSorted_clipped, axis=3).flatten()
    print 'yy', yy.eval()
    xx = T.repeat(T.arange(neighborsArgSorted.shape[0]), k_max)
    pool_kmax = input[xx, yy]

    print pool_kmax.eval()
    # pool_kmax_shape = T.join(0, T.as_tensor([input.shape[0], input.shape[1], input.shape[3], k]))
    # pooled_out = pool_kmax.reshape(pool_kmax_shape, ndim=4).dimshuffle(0, 1, 3, 2)
    pool_kmax_shape = T.join(
        0,
        T.as_tensor(
            [input.shape[0], input.shape[1], input.shape[3], kmax_limit]))
    pooled_out = pool_kmax.reshape(pool_kmax_shape,
                                   ndim=4).dimshuffle(0, 1, 3, 2)
    # pooled_out = TSN.neibs2images(pool_kmax, (input_shape[2], 1), input_shape, mode='valid') #.dimshuffle(0, 1, 3, 2)

    # image_data = np.arange(np.prod(input_shape), dtype=np.float64).reshape(input_shape)
    print image_data
    print 'kmax', k_max
Esempio n. 40
0
def conv2d(input,
           filters,
           image_shape=None,
           filter_shape=None,
           border_mode='valid',
           subsample=(1, 1),
           **kargs):
    """
    signal.conv.conv2d performs a basic 2D convolution of the input with the
    given filters. The input parameter can be a single 2D image or a 3D tensor,
    containing a set of images. Similarly, filters can be a single 2D filter or
    a 3D tensor, corresponding to a set of 2D filters.

    Shape parameters are optional and will result in faster execution.

    Parameters
    ----------
    input : dmatrix of dtensor3
        Symbolic variable for images to be filtered.
    filters : dmatrix of dtensor3
        Symbolic variable containing filter values.
    border_mode: {'valid', 'full'}
        See scipy.signal.convolve2d.
    subsample
        Factor by which to subsample output.
    image_shape : tuple of length 2 or 3
        ([number images,] image height, image width).
    filter_shape : tuple of length 2 or 3
        ([number filters,] filter height, filter width).
    kwargs
        See theano.tensor.nnet.conv.conv2d.

    Returns
    -------
    symbolic 2D,3D or 4D tensor
        Tensor of filtered images, with shape
        ([number images,] [number filters,] image height, image width).

    """
    assert input.ndim in (2, 3)
    assert filters.ndim in (2, 3)

    # use shape information if it is given to us ###
    if filter_shape and image_shape:
        if input.ndim == 3:
            bsize = image_shape[0]
        else:
            bsize = 1
        imshp = (1, ) + tuple(image_shape[-2:])

        if filters.ndim == 3:
            nkern = filter_shape[0]
        else:
            nkern = 1
        kshp = filter_shape[-2:]
    else:
        nkern, kshp = None, None
        bsize, imshp = None, None

    # reshape tensors to 4D, for compatibility with ConvOp ###
    if input.ndim == 3:
        sym_bsize = input.shape[0]
    else:
        sym_bsize = 1

    if filters.ndim == 3:
        sym_nkern = filters.shape[0]
    else:
        sym_nkern = 1

    new_input_shape = tensor.join(0, tensor.stack([sym_bsize, 1]),
                                  input.shape[-2:])
    input4D = tensor.reshape(input, new_input_shape, ndim=4)

    new_filter_shape = tensor.join(0, tensor.stack([sym_nkern, 1]),
                                   filters.shape[-2:])
    filters4D = tensor.reshape(filters, new_filter_shape, ndim=4)

    # perform actual convolution ###
    op = conv.ConvOp(output_mode=border_mode,
                     dx=subsample[0],
                     dy=subsample[1],
                     imshp=imshp,
                     kshp=kshp,
                     nkern=nkern,
                     bsize=bsize,
                     **kargs)

    output = op(input4D, filters4D)

    # flatten to 3D tensor if convolving with single filter or single image
    if input.ndim == 2 and filters.ndim == 2:
        if theano.config.warn.signal_conv2d_interface:
            warnings.warn(
                "theano.tensor.signal.conv2d() now outputs a 2d tensor when both"
                " inputs are 2d. To disable this warning, set the Theano flag"
                " warn.signal_conv2d_interface to False",
                stacklevel=3)

        output = tensor.flatten(output.T, outdim=2).T
    elif input.ndim == 2 or filters.ndim == 2:
        output = tensor.flatten(output.T, outdim=3).T

    return output
Esempio n. 41
0
def test_gpujoin_no_rebroadcast():
    _a = numpy.asarray([[1, 2], [3, 4]], dtype='float32')
    a = tcn.shared_constructor(_a)
    f = theano.function([], T.join(1, a))
    l = f.maker.env.toposort()
    assert not any([isinstance(x.op, T.Rebroadcast) for x in l])
Esempio n. 42
0
    def normal(
        self,
        size,
        avg=0.0,
        std=1.0,
        ndim=None,
        dtype=None,
        nstreams=None,
        truncate=False,
        **kwargs,
    ):
        """
        Sample a tensor of values from a normal distribution.

        Parameters
        ----------
        size : int_vector_like
            Array dimensions for the output tensor.
        avg : float_like, optional
            The mean value for the truncated normal to sample from (defaults to 0.0).
        std : float_like, optional
            The standard deviation for the truncated normal to sample from (defaults to 1.0).
        truncate : bool, optional
            Truncates the normal distribution at 2 standard deviations if True (defaults to False).
            When this flag is set, the standard deviation of the result will be less than the one specified.
        ndim : int, optional
            The number of dimensions for the output tensor (defaults to None).
            This argument is necessary if the size argument is ambiguous on the number of dimensions.
        dtype : str, optional
            The data-type for the output tensor. If not specified,
            the dtype is inferred from avg and std, but it is at least as precise as floatX.
        kwargs
            Other keyword arguments for random number generation (see uniform).

        Returns
        -------
        samples : TensorVariable
            A Theano tensor of samples randomly drawn from a normal distribution.

        """
        size = _check_size(size)
        avg = undefined_grad(as_tensor_variable(avg))
        std = undefined_grad(as_tensor_variable(std))

        if dtype is None:
            dtype = scal.upcast(config.floatX, avg.dtype, std.dtype)

        avg = tensor.cast(avg, dtype=dtype)
        std = tensor.cast(std, dtype=dtype)

        # generate even number of uniform samples
        # Do manual constant folding to lower optiimizer work.
        if isinstance(size, theano.Constant):
            n_odd_samples = size.prod(dtype="int64")
        else:
            n_odd_samples = tensor.prod(size, dtype="int64")
        n_even_samples = n_odd_samples + n_odd_samples % 2
        uniform = self.uniform(
            (n_even_samples, ),
            low=0.0,
            high=1.0,
            ndim=1,
            dtype=dtype,
            nstreams=nstreams,
            **kwargs,
        )

        # box-muller transform
        u1 = uniform[:n_even_samples // 2]
        u2 = uniform[n_even_samples // 2:]
        r = tensor.sqrt(-2.0 * tensor.log(u1))
        theta = np.array(2.0 * np.pi, dtype=dtype) * u2
        cos_theta, sin_theta = tensor.cos(theta), tensor.sin(theta)
        z0 = r * cos_theta
        z1 = r * sin_theta

        if truncate:
            # use valid samples
            to_fix0 = (z0 < -2.0) | (z0 > 2.0)
            to_fix1 = (z1 < -2.0) | (z1 > 2.0)
            z0_valid = z0[tensor.nonzero(~to_fix0)]
            z1_valid = z1[tensor.nonzero(~to_fix1)]

            # re-sample invalid samples
            to_fix0 = tensor.nonzero(to_fix0)[0]
            to_fix1 = tensor.nonzero(to_fix1)[0]
            n_fix_samples = to_fix0.size + to_fix1.size
            lower = tensor.constant(1.0 / np.e**2, dtype=dtype)
            u_fix = self.uniform(
                (n_fix_samples, ),
                low=lower,
                high=1.0,
                ndim=1,
                dtype=dtype,
                nstreams=nstreams,
                **kwargs,
            )
            r_fix = tensor.sqrt(-2.0 * tensor.log(u_fix))
            z0_fixed = r_fix[:to_fix0.size] * cos_theta[to_fix0]
            z1_fixed = r_fix[to_fix0.size:] * sin_theta[to_fix1]

            # pack everything together to a useful result
            norm_samples = tensor.join(0, z0_valid, z0_fixed, z1_valid,
                                       z1_fixed)
        else:
            norm_samples = tensor.join(0, z0, z1)
        if isinstance(n_odd_samples, theano.Variable):
            samples = norm_samples[:n_odd_samples]
        elif n_odd_samples % 2 == 1:
            samples = norm_samples[:-1]
        else:
            samples = norm_samples
        samples = tensor.reshape(samples, newshape=size, ndim=ndim)
        samples *= std
        samples += avg

        return samples
Esempio n. 43
0
 def test_join(self):
     tv = numpy.asarray(self.rng.uniform(size=(10, )), theano.config.floatX)
     t = theano.shared(tv)
     out = tensor.join(0, self.x, t)
     self.check_rop_lop(out, (self.in_shape[0] + 10, ))
Esempio n. 44
0
def pool_2d(input,
            ds,
            ignore_border=None,
            st=None,
            padding=(0, 0),
            mode='max'):
    """Downscale the input by a specified factor

    Takes as input a N-D tensor, where N >= 2. It downscales the input image by
    the specified factor, by keeping only the maximum value of non-overlapping
    patches of size (ds[0],ds[1])

    Parameters
    ----------
    input : N-D theano tensor of input images
        Input images. Max pooling will be done over the 2 last dimensions.
    ds : tuple of length 2
        Factor by which to downscale (vertical ds, horizontal ds).
        (2,2) will halve the image in each dimension.
    ignore_border : bool (default None, will print a warning and set to False)
        When True, (5,5) input with ds=(2,2) will generate a (2,2) output.
        (3,3) otherwise.
    st : tuple of two ints
        Stride size, which is the number of shifts over rows/cols to get the
        next pool region. If st is None, it is considered equal to ds
        (no overlap on pooling regions).
    padding : tuple of two ints
        (pad_h, pad_w), pad zeros to extend beyond four borders of the
        images, pad_h is the size of the top and bottom margins, and
        pad_w is the size of the left and right margins.
    mode : {'max', 'sum', 'average_inc_pad', 'average_exc_pad'}
        Operation executed on each window. `max` and `sum` always exclude
        the padding in the computation. `average` gives you the choice to
        include or exclude it.

    """
    if input.ndim < 2:
        raise NotImplementedError('pool_2d requires a dimension >= 2')
    if ignore_border is None:
        warnings.warn(
            "pool_2d() will have the parameter ignore_border"
            " default value changed to True (currently"
            " False). To have consistent behavior with all Theano"
            " version, explicitly add the parameter ignore_border=True."
            " On the GPU, using ignore_border=False is needed to use CuDNN."
            " When using ignore_border=False and not using CuDNN, the only"
            " GPU combination supported is when"
            " `ds == st and padding == (0, 0) and mode == 'max'`."
            " Otherwise, the convolution will be executed on CPU.",
            stacklevel=2)
        ignore_border = False
    if input.ndim == 4:
        op = Pool(ds, ignore_border, st=st, padding=padding, mode=mode)
        output = op(input)
        return output

    # extract image dimensions
    img_shape = input.shape[-2:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = tensor.prod(input.shape[:-2])
    batch_size = tensor.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = tensor.cast(
        tensor.join(0, batch_size, tensor.as_tensor([1]), img_shape), 'int64')
    input_4D = tensor.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of images
    op = Pool(ds, ignore_border, st=st, padding=padding, mode=mode)
    output = op(input_4D)

    # restore to original shape
    outshp = tensor.join(0, input.shape[:-2], output.shape[-2:])
    return tensor.reshape(output, outshp, ndim=input.ndim)
Esempio n. 45
0
def conv2d(input, filters, image_shape=None, filter_shape=None,
           border_mode='valid', subsample=(1,1), **kargs):
    """
    signal.conv.conv2d performs a basic 2D convolution of the input with the
    given filters. The input parameter can be a single 2D image or a 3D tensor,
    containing a set of images. Similarly, filters can be a single 2D filter or
    a 3D tensor, corresponding to a set of 2D filters.

    Shape parameters are optional and will result in faster execution.

    :type input: dmatrix of dtensor3
    :param input: symbolic variable for images to be filtered
    :type filters: dmatrix of dtensor3
    :param filters: symbolic variable containing filter values
    :param border_mode: 'valid' or 'full'. see scipy.signal.convolve2d
    :param subsample: factor by which to subsample output
    :type image_shape: tuple of length 2 or 3
    :param image_shape: ([number images,] image height, image width)
    :type filter_shape: tuple of length 2 or 3
    :param filter_shape: ([number filters,] filter height, filter width)
    :param kwargs: see theano.tensor.nnet.conv.conv2d
    :rtype: symbolic 2D,3D or 4D tensor
    :return: tensor of filtered images, with shape
             ([number images,] [number filters,] image height, image width)
    """
    assert input.ndim in (2,3)
    assert filters.ndim in (2,3)

    ### use shape information if it is given to us ###
    if filter_shape and image_shape:
        if input.ndim==3:
            bsize = image_shape[0]
        else:
            bsize = 1
        imshp = (1,) + tuple(image_shape[-2:])

        if filters.ndim==3:
            nkern = filter_shape[0]
        else:
            nkern = 1
        kshp = filter_shape[-2:]
    else:
        nkern, kshp = None, None
        bsize, imshp = None, None

    ### reshape tensors to 4D, for compatibility with ConvOp ###
    if input.ndim==3:
        sym_bsize = input.shape[0]
    else:
        sym_bsize = 1

    if filters.ndim==3:
        sym_nkern = filters.shape[0]
    else:
        sym_nkern = 1

    new_input_shape = tensor.join(0, tensor.stack(sym_bsize,1), input.shape[-2:])
    input4D = tensor.reshape(input, new_input_shape, ndim=4)

    new_filter_shape = tensor.join(0, tensor.stack(sym_nkern,1), filters.shape[-2:])
    filters4D = tensor.reshape(filters, new_filter_shape, ndim=4)

    ### perform actual convolution ###
    op = conv.ConvOp(output_mode=border_mode,
                dx=subsample[0], dy=subsample[1],
                imshp=imshp, kshp=kshp, nkern=nkern, bsize=bsize,**kargs)

    output = op(input4D, filters4D)

    # flatten to 3D tensor if convolving with single filter or single image
    if input.ndim==2 or filters.ndim==2:
        output = tensor.flatten(output.T, outdim=3).T

    return output
Esempio n. 46
0
def max_pool_2d(input,
                ds,
                ignore_border=False,
                st=None,
                padding=(0, 0),
                mode='max'):
    """
    Takes as input a N-D tensor, where N >= 2. It downscales the input image by
    the specified factor, by keeping only the maximum value of non-overlapping
    patches of size (ds[0],ds[1])

    :type input: N-D theano tensor of input images.
    :param input: input images. Max pooling will be done over the 2 last
        dimensions.
    :type ds: tuple of length 2
    :param ds: factor by which to downscale (vertical ds, horizontal ds).
        (2,2) will halve the image in each dimension.
    :type ignore_border: bool
    :param ignore_border: When True, (5,5) input with ds=(2,2)
        will generate a (2,2) output. (3,3) otherwise.
    :type st: tuple of lenght 2
    :param st: stride size, which is the number of shifts
        over rows/cols to get the the next pool region.
        if st is None, it is considered equal to ds
        (no overlap on pooling regions)
    :param padding: (pad_h, pad_w), pad zeros to extend beyond four borders
            of the images, pad_h is the size of the top and bottom margins,
            and pad_w is the size of the left and right margins.
    :type padding: tuple of two ints
    :param mode: 'max', 'sum', 'average_inc_pad' or 'average_exc_pad'.
        Operation executed on each window.  `max` and `sum` always exclude
        the padding in the computation. `average` gives you the choice to
        include or exclude it.
    :type mode: string
    """
    if input.ndim < 2:
        raise NotImplementedError('max_pool_2d requires a dimension >= 2')
    if input.ndim == 4:
        op = DownsampleFactorMax(ds,
                                 ignore_border,
                                 st=st,
                                 padding=padding,
                                 mode=mode)
        output = op(input)
        return output

    # extract image dimensions
    img_shape = input.shape[-2:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = tensor.prod(input.shape[:-2])
    batch_size = tensor.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = tensor.cast(
        tensor.join(0, batch_size, tensor.as_tensor([1]), img_shape), 'int64')
    input_4D = tensor.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of images
    op = DownsampleFactorMax(ds,
                             ignore_border,
                             st=st,
                             padding=padding,
                             mode=mode)
    output = op(input_4D)

    # restore to original shape
    outshp = tensor.join(0, input.shape[:-2], output.shape[-2:])
    return tensor.reshape(output, outshp, ndim=input.ndim)
Esempio n. 47
0
@description: 小测试实例
'''

import theano
import theano.tensor as tt

x = tt.matrix('x')
f = theano.function([x], (x**2).shape)
theano.printing.debugprint(f)
print("\n")

import numpy

x = tt.matrix('x')
y = tt.matrix('y')
z = tt.join(0, x, y)
xv = numpy.random.rand(5, 4)
yv = numpy.random.rand(3, 3)
f = theano.function([x, y], z.shape)
theano.printing.debugprint(f)
print("\n")

f1 = f(xv, yv)
theano.printing.debugprint(f1)
print("\n")

f1 = theano.function([x, y], z)  # Do not take the shape.
theano.printing.debugprint(f1)
print("\n")

x = tt.matrix()
Esempio n. 48
0
def max_pool_3d(input, ds, ignore_border=False):
    """
    Takes as input a N-D tensor, where N >= 3. It downscales the input by
    the specified factor, by keeping only the maximum value of non-overlapping
    patches of size (ds[0],ds[1],ds[2]) (depth, height, width)

    Arguments:
        input (N-D theano tensor of input images): input images. Max pooling will be done over the 3 last dimensions.
        ds (tuple of length 3): factor by which to downscale. (2,2,2) will halve the video in each dimension.
        ignore_border (boolean): When True, (5,5,5) input with ds=(2,2,2)
            will generate a (2,2,2) output. (3,3,3) otherwise.
    """

    if input.ndim < 3:
        raise NotImplementedError('max_pool_3d requires a dimension >= 3')

    # extract nr dimensions
    vid_dim = input.ndim
    # max pool in two different steps, so we can use the 2d implementation of
    # downsamplefactormax. First maxpool frames as usual.
    # Then maxpool the depth dimension. Shift the depth dimension to the third
    # position, so rows and cols are in the back

    # extract dimensions
    frame_shape = input.shape[-2:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = tensor.prod(input.shape[:-2])
    batch_size = tensor.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = tensor.cast(
        tensor.join(0, batch_size, tensor.as_tensor([
            1,
        ]), frame_shape), 'int32')
    input_4D = tensor.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of videos in rows and cols
    op = DownsampleFactorMax((ds[1], ds[2]), ignore_border)
    output = op(input_4D)
    # restore to original shape
    outshape = tensor.join(0, input.shape[:-2], output.shape[-2:])
    out = tensor.reshape(output, outshape, ndim=input.ndim)

    # now maxpool depth

    # output (depth, rows, cols), reshape so that depth is in the back
    shufl = (list(range(vid_dim - 3)) + [vid_dim - 2] + [vid_dim - 1] +
             [vid_dim - 3])
    input_depth = out.dimshuffle(shufl)
    # reset dimensions
    vid_shape = input_depth.shape[-2:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = tensor.prod(input_depth.shape[:-2])
    batch_size = tensor.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,width,depth)
    new_shape = tensor.cast(
        tensor.join(0, batch_size, tensor.as_tensor([
            1,
        ]), vid_shape), 'int32')
    input_4D_depth = tensor.reshape(input_depth, new_shape, ndim=4)
    # downsample mini-batch of videos in depth
    op = DownsampleFactorMax((1, ds[0]), ignore_border)
    outdepth = op(input_4D_depth)
    # output
    # restore to original shape (xxx, rows, cols, depth)
    outshape = tensor.join(0, input_depth.shape[:-2], outdepth.shape[-2:])
    shufl = (list(range(vid_dim - 3)) + [vid_dim - 1] + [vid_dim - 3] +
             [vid_dim - 2])
    return tensor.reshape(outdepth, outshape,
                          ndim=input.ndim).dimshuffle(shufl)
Esempio n. 49
0
    def __init__(self,
                 numpy_rng,
                 theano_rng=None,
                 cfg=None,
                 testing=False,
                 input=None):

        self.layers = []
        self.extra_layers = []
        self.params = []
        self.delta_params = []
        self.n_ins = cfg.n_ins
        self.n_outs = cfg.n_outs
        self.conv_layers = []

        self.cfg = cfg
        self.conv_layer_configs = cfg.conv_layer_configs
        self.conv_activation = cfg.conv_activation
        self.use_fast = cfg.use_fast

        self.extra_x = T.matrix('extra_x')

        # 1.5 attention
        self.extra_dim = cfg.extra_dim
        print 'Extra input dimension: ' + str(cfg.extra_dim)
        self.extra_layers_sizes = cfg.extra_layers_sizes

        # 2. dnn
        self.hidden_layers_sizes = cfg.hidden_layers_sizes
        self.hidden_layers_number = len(self.hidden_layers_sizes)
        self.activation = cfg.activation

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2**30))
        if input == None:
            self.x = T.matrix('x')
        else:
            self.x = input
        self.y = T.matrix('y')

        #######################
        # build cnn layers   #
        #######################
        print '1. start to build cnn mag layer: ' + str(
            self.conv_layer_configs)
        self.conv_layer_num = len(self.conv_layer_configs)
        for i in xrange(self.conv_layer_num):
            if i == 0:
                input = self.x
            else:
                input = self.layers[-1].output
            config = self.conv_layer_configs[i]
            conv_layer = ConvLayer(numpy_rng=numpy_rng,
                                   input=input,
                                   input_shape=config['input_shape'],
                                   filter_shape=config['filter_shape'],
                                   poolsize=config['poolsize'],
                                   activation=self.conv_activation,
                                   flatten=config['flatten'],
                                   use_fast=self.use_fast,
                                   testing=testing)
            self.layers.append(conv_layer)
            self.conv_layers.append(conv_layer)
            self.params.extend(conv_layer.params)
            self.delta_params.extend(conv_layer.delta_params)

        self.conv_output_dim = config['output_shape'][1] * config[
            'output_shape'][2] * config['output_shape'][3]
        cfg.n_ins = config['output_shape'][1] * config['output_shape'][
            2] * config['output_shape'][3]

        #######################################
        # build phase-based attention layer   #
        #######################################
        # 0. phase-based attention
        print '2. start to build attend layer: ' + str(self.extra_layers_sizes)
        for i in xrange(len(self.extra_layers_sizes)):
            if i == 0:
                input_size = cfg.extra_dim
                layer_input = self.extra_x
            else:
                input_size = self.extra_layers_sizes[i - 1]
                layer_input = self.extra_layers[-1].output

            W = None
            b = None
            attend_layer = HiddenLayer(rng=numpy_rng,
                                       input=layer_input,
                                       n_in=input_size,
                                       n_out=self.extra_layers_sizes[i],
                                       W=W,
                                       b=b,
                                       activation=self.activation)
            print '\tbuild attend layer: ' + str(input_size) + ' x ' + str(
                attend_layer.n_out)
            self.extra_layers.append(attend_layer)
            self.params.extend(attend_layer.params)
            self.delta_params.extend(attend_layer.delta_params)
        self.extra_output = self.extra_layers[-1].output
        self.extra_output = T.nnet.softmax(self.extra_layers[-1].output)

        #self.extra_output_rand = numpy.asarray(numpy_rng.uniform(
        #            low=-0.1,
        #            high=1.0,
        #            size=(32,20)), dtype=theano.config.floatX)
        #self.extra_output = theano.shared(value=self.extra_output_rand, name='rand', borrow=True)
        print '2. finish attend layer softmax(0): ' + str(
            self.extra_layers[-1].n_out)
        #######################################
        # build dnnv                          #
        #######################################

        print '3. start to build dnnv layer: ' + str(self.hidden_layers_number)
        for i in xrange(self.hidden_layers_number):
            # construct the hidden layer
            if i == 0:
                # 1. Join two features (magnitude + phase)
                input_size = self.conv_output_dim + self.extra_layers_sizes[-1]
                layer_input = T.join(1, self.layers[-1].output,
                                     self.extra_output)
                # 2. Weighted Sum (magnitude * phase)
                #input_size = self.conv_output_dim
                #layer_input = self.layers[-1].output * self.extra_output
            else:
                input_size = self.hidden_layers_sizes[i - 1]
                layer_input = self.layers[-1].output

            W = None
            b = None
            hidden_layer = HiddenLayer(rng=numpy_rng,
                                       input=layer_input,
                                       n_in=input_size,
                                       n_out=self.hidden_layers_sizes[i],
                                       W=W,
                                       b=b,
                                       activation=self.activation)
            print '\tbuild dnnv layer: ' + str(input_size) + ' x ' + str(
                hidden_layer.n_out)
            # add the layer to our list of layers
            self.layers.append(hidden_layer)
            self.params.extend(hidden_layer.params)
            self.delta_params.extend(hidden_layer.delta_params)
        print '3. finish dnnv layer: ' + str(self.layers[-1].n_out)

        #######################################
        # build logistic regression layer     #
        #######################################
        print '4. start to build log layer: 1'
        # We now need to add a logistic layer on top of the MLP
        self.logLayer = OutputLayer(input=self.layers[-1].output,
                                    n_in=self.hidden_layers_sizes[-1],
                                    n_out=self.n_outs)
        print '\tbuild final layer: ' + str(
            self.layers[-1].n_out) + ' x ' + str(self.n_outs)

        self.layers.append(self.logLayer)
        self.params.extend(self.logLayer.params)
        self.delta_params.extend(self.logLayer.delta_params)
        print '4. finish log layer: ' + str(self.layers[-1].n_out)
        print 'Total layers: ' + str(len(self.layers))

        self.finetune_cost = self.logLayer.l2(self.y)
        self.errors = self.logLayer.errors(self.y)

        sys.stdout.flush()
Esempio n. 50
0
    def normal(self,
               size,
               avg=0.0,
               std=1.0,
               ndim=None,
               dtype=None,
               nstreams=None):
        """
        :param size: Can be a list of integers or Theano variables (ex: the
        shape of another Theano Variable)

        :param dtype: The output data type. If dtype is not specified, it will
        be inferred from the dtype of low and high, but will be at least as
        precise as floatX.

        :param nstreams: Number of streams.
        """
        # We need an even number of ]0,1[ samples. Then we split them
        # in two halves. First half becomes our U1's for Box-Muller,
        # second half our U2's. See Wikipedia page:
        # http://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
        avg = as_tensor_variable(avg)
        std = as_tensor_variable(std)

        if dtype is None:
            dtype = scal.upcast(config.floatX, avg.dtype, std.dtype)

        avg = cast(avg, dtype)
        std = cast(std, dtype)

        evened = False
        constant = False
        if isinstance(size, tuple) and all(
            [isinstance(i, (numpy.integer, int)) for i in size]):
            constant = True
            n_samples = numpy.prod(size)

            if n_samples % 2 == 1:
                n_samples += 1
                evened = True
        else:
            #if even, don't change, if odd, +1
            n_samples = prod(size) + (prod(size) % 2)
        flattened = self.uniform(size=(n_samples, ),
                                 dtype=dtype,
                                 nstreams=nstreams)

        if constant:
            U1 = flattened[:n_samples // 2]
            U2 = flattened[n_samples // 2:]
        else:
            U1 = flattened[:prod(flattened.shape) // 2]
            U2 = flattened[prod(flattened.shape) // 2:]

        #normal_samples = zeros_like(flattened)
        sqrt_ln_U1 = sqrt(-2.0 * log(U1))
        # TypeError: 'TensorVariable' object does not support item assignment
        # so this doesn't work...
        #normal_samples[:n_samples/2] = sqrt_ln_U1 * cos(2.0*numpy.pi*U2)
        #normal_samples[n_samples/2:] = sqrt_ln_U1 * sin(2.0*numpy.pi*U2)

        # so trying this instead
        first_half = sqrt_ln_U1 * cos(
            numpy.array(2.0 * numpy.pi, dtype=dtype) * U2)
        second_half = sqrt_ln_U1 * sin(
            numpy.array(2.0 * numpy.pi, dtype=dtype) * U2)
        normal_samples = join(0, first_half, second_half)

        final_samples = None
        if evened:
            final_samples = normal_samples[:-1]
        elif constant:
            final_samples = normal_samples
        else:
            final_samples = normal_samples[:prod(size)]

        if size:
            final_samples = final_samples.reshape(size)

        final_samples = avg + std * final_samples

        assert final_samples.dtype == dtype
        return final_samples
Esempio n. 51
0
    def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2), k=4):
        """
        Allocate a LeNetConvPoolLayer with shared variable internal parameters.

        :type rng: numpy.random.RandomState
        :param rng: a random number generator used to initialize weights

        :type input: theano.tensor.dtensor4
        :param input: symbolic image tensor, of shape image_shape

        :type filter_shape: tuple or list of length 4
        :param filter_shape: (number of filters, num input feature maps,
                              filter height,filter width)

        :type image_shape: tuple or list of length 4
        :param image_shape: (batch size, num input feature maps,
                             image height, image width)

        :type poolsize: tuple or list of length 2
        :param poolsize: the downsampling (pooling) factor (#rows,#cols)
        """
        assert image_shape[1] == filter_shape[1]
        self.input = input

        # there are "num input feature maps * filter height * filter width"
        # inputs to each hidden unit
        fan_in = numpy.prod(filter_shape[1:])
        # each unit in the lower layer receives a gradient from:
        # "num output feature maps * filter height * filter width" /
        #   pooling size
        fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) /
                   numpy.prod(poolsize))
        # initialize weights with random weights
        W_bound = numpy.sqrt(6. / (fan_in + fan_out))
        self.W = theano.shared(numpy.asarray(
            rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
            dtype=theano.config.floatX),
                               borrow=True)

        # the bias is a 1D tensor -- one bias per output feature map
        b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
        self.b = theano.shared(value=b_values, borrow=True)

        # convolve input feature maps with filters
        conv_out = conv.conv2d(input=input, filters=self.W,
                filter_shape=filter_shape, image_shape=image_shape)
        #images2neibs produces a 2D matrix
        neighborsForPooling = TSN.images2neibs(ten4=conv_out, neib_shape=(1,conv_out.shape[3]), mode='ignore_borders')

        #k = poolsize[1]

        neighborsArgSorted = T.argsort(neighborsForPooling, axis=1)
        kNeighborsArg = neighborsArgSorted[:,-k:]
        kNeighborsArgSorted = T.sort(kNeighborsArg, axis=1)

        ii = T.repeat(T.arange(neighborsForPooling.shape[0]), k)
        jj = kNeighborsArgSorted.flatten()
        pooledkmaxTmp = neighborsForPooling[ii, jj]

        # reshape pooledkmaxTmp
        new_shape = T.cast(T.join(0, conv_out.shape[:-2],
                           T.as_tensor([conv_out.shape[2]]),
                           T.as_tensor([k])),
                           'int64')
        pooled_out = T.reshape(pooledkmaxTmp, new_shape, ndim=4)
        
        # downsample each feature map individually, using maxpooling
        '''
        pooled_out = downsample.max_pool_2d(input=conv_out,
                                            ds=poolsize, ignore_border=True)
        '''
        # add the bias term. Since the bias is a vector (1D array), we first
        # reshape it to a tensor of shape (1,n_filters,1,1). Each bias will
        # thus be broadcasted across mini-batches and feature map
        # width & height
        self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))

        # store parameters of this layer
        self.params = [self.W, self.b]