# Declare Theano symbolic variables x = T.matrix("x") y = T.vector('y') w = theano_test.shared(rng.randn(feats),name='w') b = theano_test.shared(0.,name='b') print 'Initial model:' print w.get_value(),b.get_value() # Construct Theano expression graph p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b)) # Probability that target = 1 prediction = p_1 > 0.5 # The prediction thresholded xent = -y * T.log(p_1) - (1-y) * T.log(1-p_1) # Cross-entropy loss function cost = xent.mean() + 0.01 * (w ** 2).sum()# The cost to minimize gw, gb = T.grad(cost, [w, b]) # Compute the gradient of the cost # (we shall return to this in a # following section of this tutorial) # Compile train = theano_test.function( inputs=[x,y], outputs=[prediction, xent], updates=((w, w - 0.1 * gw), (b, b - 0.1 * gb))) predict = theano_test.function(inputs=[x], outputs=prediction) # Train for i in range(training_steps): pred, err = train(D[0], D[1]) print "Final model:" print w.get_value(), b.get_value() print "target values for D:", D[1] print "prediction on D:", predict(D[0])
#encoding:UTF-8 __author__ = 'auroua' import theano_test from theano_test import pp from theano_test import function import theano_test.tensor as T x = T.dscalar('x') y = x**2 gy = T.grad(y,x) f = function([x],y) print f(4) x2 = T.dmatrix('x2') s = T.sum(1/(1+T.exp(-x2))) gs = T.grad(s,x2) dlogistic = function([x2],gs) print dlogistic([[0,1],[-1,-2]]) x3 = T.dvector('x3') y3 = x3**2 J,updates = theano_test.scan(lambda i,y,x:T.grad(y[i],x),sequences=T.arange(y3.shape[0]),non_sequences=[y3,x3]) f = function([x3],J,updates=updates) print f([4,4]) x4 = T.dvector('x4') y4 = x4**2 cost = y4.sum() gy4 = T.grad(cost,x4) H,updates2 = theano_test.scan(lambda i,gy,x4:T.grad(gy[i],x4),sequences=T.arange(gy4.shape[0]),non_sequences=[gy4,x4])
__author__ = 'auroua' from theano_test import function, config, shared, sandbox import theano_test.sandbox.cuda.basic_ops import theano_test.tensor as T import numpy import time vlen = 10 * 30 * 768 # 10 x #cores x # threads per core iters = 1000 rng = numpy.random.RandomState(22) x = shared(numpy.asarray(rng.rand(vlen), config.floatX)) f = function([], sandbox.cuda.basic_ops.gpu_from_host(T.exp(x))) print f.maker.fgraph.toposort() t0 = time.time() for i in xrange(iters): r = f() t1 = time.time() print 'Looping %d times took' % iters, t1 - t0, 'seconds' print 'Result is', r print 'Numpy result is', numpy.asarray(r) if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]): print 'Used the cpu' else: print 'Used the gpu'
__author__ = 'auroua' import theano_test.tensor as T from theano_test import function import theano_test import pydot print pydot.find_graphviz() x = T.dmatrix('x') y = x*2 print type(y.owner) print y.owner.op.name print len(y.owner.inputs) print type(y.owner.inputs[1].owner) #apply nodes are those that define which computations the graph does # When compiling a Theano function, what you give to the theano.function is actually a graph # (starting from the output variables you can traverse the graph up to the input variables). # While this graph structure shows how to compute the output from the input, # it also offers the possibility to improve the way this computation is carried out. a = T.vector('a') b = a+a**10 fab = function([a],b) print fab([0,1,2]) theano_test.printing.pydotprint(b, outfile="/home/auroua/symbolic_graph_unopt.png", var_with_name_simple=True) theano_test.printing.pydotprint(fab, outfile="/home/auroua/symbolic_graph_opt.png", var_with_name_simple=True)
x.tag.test_value = D[0] y.tag.test_value = D[1] #print "Initial model:" #print w.get_value(), b.get_value() # Construct Theano expression graph p_1 = 1 / (1 + T.exp(-T.dot(x, w)-b)) # Probability of having a one prediction = p_1 > 0.5 # The prediction that is done: 0 or 1 xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1) # Cross-entropy cost = xent.mean() + 0.01*(w**2).sum() # The cost to optimize gw,gb = T.grad(cost, [w,b]) # Compile expressions to functions train = theano_test.function( inputs=[x,y], outputs=[prediction, xent], updates={w:w-0.01*gw, b:b-0.01*gb}, name = "train") predict = theano_test.function(inputs=[x], outputs=prediction, name = "predict") if any([x.op.__class__.__name__ in ['Gemv', 'CGemv', 'Gemm', 'CGemm'] for x in train.maker.fgraph.toposort()]): print 'Used the cpu' elif any([x.op.__class__.__name__ in ['GpuGemm', 'GpuGemv'] for x in train.maker.fgraph.toposort()]): print 'Used the gpu' else: print 'ERROR, not able to tell if theano used the cpu or the gpu' print train.maker.fgraph.toposort()
import numpy import theano_test import theano_test.tensor as T rng = numpy.random N = 400 feats = 784 D = (rng.randn(N,feats).astype(theano_test.config.floatX),rng.randint(size=N,low=0,high=2).astype(theano_test.config.floatX)) traing_steps = 10000 x = T.dmatrix('x') y = T.vector('y') w = theano_test.shared(rng.rand(feats).astype(theano_test.config.floatX),name='w') b = theano_test.shared(numpy.asarray(0.,dtype=theano_test.config.floatX),name='b') x.tag.test_value = D[0] y.tag.test_value = D[1] p_1 = 1/(1+T.exp(-T.dot(x,w)-b)) prediction = p_1>0.5 xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1) cost = xent.mean() + 0.01*(w**2).sum() gw,gb = T.grad(cost, [w,b]) train = theano_test.function(inputs=[x,y], outputs=[prediction, xent], updates=[[w, w-0.01*gw], [b, b-0.01*gb]], name = "train") predict = theano_test.function(inputs=[x], outputs=prediction, name = "predict") print theano_test.printing.pprint(prediction) print theano_test.printing.debugprint(prediction) print theano_test.printing.debugprint(predict)
__author__ = 'auroua' from theano_test import function, config, shared, sandbox import theano_test.tensor as T import numpy import time import theano_test vlen = 10 * 30 * 768 # 10 x #cores x # threads per core iters = 1000 rng = numpy.random.RandomState(22) x = shared(numpy.asarray(rng.rand(vlen), config.floatX)) f = function([], T.exp(x)) print f.maker.fgraph.toposort() t0 = time.time() for i in xrange(iters): r = f() t1 = time.time() print 'Looping %d times took' % iters, t1 - t0, 'seconds' print 'Result is', r if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]): print 'Used the cpu' else: print 'Used the gpu' #print theano.config
instances = 10 draws = np.random.randint(0,2,size=(instances,step)) walk = np.where(draws>0,1,-1) #print walk walks = walk.cumsum(1) print walks hist3 = (np.abs(walks)>=3).any(1) print hist3 crossing_time = np.abs(walks[hist3]).argmax(1) crossing_time2 = (np.abs(walks[hist3])>=3).argmax(1) print crossing_time print crossing_time2 print crossing_time.mean() print crossing_time2.mean() import theano_test from theano_test import tensor print theano_test.__version__ a = tensor.dscalar() b = tensor.dscalar() c = a + b f = theano_test.function([a,b],c) print f assert 4.0 == f(1.5,2.5)
__author__ = "auroua" import theano_test.tensor as T from theano_test import function from theano_test import pp x = T.dscalar("x") y = T.dscalar("y") z = x + y f = function([x, y], z) f(2, 3) z.eval({x: 16.3, y: 14.3}) print z print pp(z) xm = T.dmatrix("xm") ym = T.dmatrix("ym") zm = xm + ym f2 = function((xm, ym), zm) f2(np.array([[1, 2], [2, 3]]), np.array([[3, 4], [4, 5]])) xv = T.dvector("xv") yv = T.dvector("yv") zv = xv ** 2 + yv ** 2 + 2 * xv * yv fv = function((xv, yv), zv) print pp(zv) print fv([1, 2], [3, 4])
#encoding:UTF-8 __author__ = 'auroua' from theano_test import pp import theano_test.tensor as T from theano_test import function #简单标量函数的求导 x = T.dscalar('x') y = x ** 2 gy = T.grad(y,x) print pp(gy) f = function([x],gy) print f(4) print f(94.2) print pp(f.maker.fgraph.outputs[0]) #sigmodi的求导 xs = T.dmatrix('x') y = T.sum(1/(1+T.exp(-xs))) gs = T.grad(y,xs) dlogistic = function([xs],gs) print dlogistic([[0, 1], [-1, -2]])