def cnn_tagger(width: int, vector_width: int, nr_classes: int = 17): with Model.define_operators({">>": chain}): model = strings2arrays() >> with_array( HashEmbed(nO=width, nV=vector_width, column=0) >> expand_window( window_size=1) >> Relu(nO=width, nI=width * 3) >> Relu( nO=width, nI=width) >> Softmax(nO=nr_classes, nI=width)) return model
def make_hash_embed(index): nonlocal seed seed += 1 return HashEmbed(width, rows[index], column=index, seed=seed, dropout=0.0)
def test_seed_changes_bucket(): model1 = HashEmbed(64, 1000, seed=2).initialize() model2 = HashEmbed(64, 1000, seed=1).initialize() arr = numpy.ones((1,), dtype="uint64") vector1 = model1.predict(arr) vector2 = model2.predict(arr) assert vector1.sum() != vector2.sum()
def create_embed_relu_relu_softmax(depth, width, vector_length): with Model.define_operators({">>": chain}): model = strings2arrays() >> with_array( HashEmbed(width, vector_length) >> expand_window(window_size=1) >> ReLu(width, width * 3) >> ReLu(width, width) >> Softmax(17, width)) return model
def CharacterEmbed( width: int, rows: int, nM: int, nC: int, include_static_vectors: bool, feature: Union[int, str] = "LOWER", ) -> Model[List[Doc], List[Floats2d]]: """Construct an embedded representation based on character embeddings, using a feed-forward network. A fixed number of UTF-8 byte characters are used for each word, taken from the beginning and end of the word equally. Padding is used in the centre for words that are too short. For instance, let's say nC=4, and the word is "jumping". The characters used will be jung (two from the start, two from the end). If we had nC=8, the characters would be "jumpping": 4 from the start, 4 from the end. This ensures that the final character is always in the last position, instead of being in an arbitrary position depending on the word length. The characters are embedded in a embedding table with a given number of rows, and the vectors concatenated. A hash-embedded vector of the LOWER of the word is also concatenated on, and the result is then passed through a feed-forward network to construct a single vector to represent the information. feature (int or str): An attribute to embed, to concatenate with the characters. width (int): The width of the output vector and the feature embedding. rows (int): The number of rows in the LOWER hash embedding table. nM (int): The dimensionality of the character embeddings. Recommended values are between 16 and 64. nC (int): The number of UTF-8 bytes to embed per word. Recommended values are between 3 and 8, although it may depend on the length of words in the language. include_static_vectors (bool): Whether to also use static word vectors. Requires a vectors table to be loaded in the Doc objects' vocab. """ feature = intify_attr(feature) if feature is None: raise ValueError(Errors.E911.format(feat=feature)) char_embed = chain( _character_embed.CharacterEmbed(nM=nM, nC=nC), cast(Model[List[Floats2d], Ragged], list2ragged()), ) feature_extractor: Model[List[Doc], Ragged] = chain( FeatureExtractor([feature]), cast(Model[List[Ints2d], Ragged], list2ragged()), with_array(HashEmbed(nO=width, nV=rows, column=0, seed=5)), # type: ignore ) max_out: Model[Ragged, Ragged] if include_static_vectors: max_out = with_array( Maxout(width, nM * nC + (2 * width), nP=3, normalize=True, dropout=0.0) # type: ignore ) model = chain( concatenate( char_embed, feature_extractor, StaticVectors(width, dropout=0.0), ), max_out, cast(Model[Ragged, List[Floats2d]], ragged2list()), ) else: max_out = with_array( Maxout(width, nM * nC + width, nP=3, normalize=True, dropout=0.0) # type: ignore ) model = chain( concatenate( char_embed, feature_extractor, ), max_out, cast(Model[Ragged, List[Floats2d]], ragged2list()), ) return model
def test_init(): model = HashEmbed(64, 1000).initialize() assert model.get_dim("nV") == 1000 assert model.get_dim("nO") == 64 assert model.get_param("E").shape == (1000, 64)
def TextCatEnsemble_v1( width: int, embed_size: int, pretrained_vectors: Optional[bool], exclusive_classes: bool, ngram_size: int, window_size: int, conv_depth: int, dropout: Optional[float], nO: Optional[int] = None, ) -> Model: # Don't document this yet, I'm not sure it's right. cols = [ORTH, LOWER, PREFIX, SUFFIX, SHAPE, ID] with Model.define_operators({">>": chain, "|": concatenate, "**": clone}): lower = HashEmbed(nO=width, nV=embed_size, column=cols.index(LOWER), dropout=dropout, seed=10) prefix = HashEmbed( nO=width // 2, nV=embed_size, column=cols.index(PREFIX), dropout=dropout, seed=11, ) suffix = HashEmbed( nO=width // 2, nV=embed_size, column=cols.index(SUFFIX), dropout=dropout, seed=12, ) shape = HashEmbed( nO=width // 2, nV=embed_size, column=cols.index(SHAPE), dropout=dropout, seed=13, ) width_nI = sum( layer.get_dim("nO") for layer in [lower, prefix, suffix, shape]) trained_vectors = FeatureExtractor(cols) >> with_array( uniqued( (lower | prefix | suffix | shape) >> Maxout( nO=width, nI=width_nI, normalize=True), column=cols.index(ORTH), )) if pretrained_vectors: static_vectors = StaticVectors(width) vector_layer = trained_vectors | static_vectors vectors_width = width * 2 else: vector_layer = trained_vectors vectors_width = width tok2vec = vector_layer >> with_array( Maxout(width, vectors_width, normalize=True) >> residual((expand_window(window_size=window_size) >> Maxout( nO=width, nI=width * ((window_size * 2) + 1), normalize=True)))**conv_depth, pad=conv_depth, ) cnn_model = (tok2vec >> list2ragged() >> ParametricAttention(width) >> reduce_sum() >> residual(Maxout(nO=width, nI=width)) >> Linear(nO=nO, nI=width) >> Dropout(0.0)) linear_model = build_bow_text_classifier( nO=nO, ngram_size=ngram_size, exclusive_classes=exclusive_classes, no_output_layer=False, ) nO_double = nO * 2 if nO else None if exclusive_classes: output_layer = Softmax(nO=nO, nI=nO_double) else: output_layer = Linear(nO=nO, nI=nO_double) >> Dropout(0.0) >> Logistic() model = (linear_model | cnn_model) >> output_layer model.set_ref("tok2vec", tok2vec) if model.has_dim("nO") is not False: model.set_dim("nO", nO) model.set_ref("output_layer", linear_model.get_ref("output_layer")) model.attrs["multi_label"] = not exclusive_classes return model