Esempio n. 1
0
def test_replace_node():
    relu1 = Relu(5)
    relu2 = Relu(5)
    relu_chain = chain(relu1, relu2)
    relu1_debug = with_debug(relu1)
    debug = Model(
        "test",
        lambda X: (X, lambda dY: dY),
        layers=[relu1, relu2, relu1, relu_chain],
        refs={
            "relu1": relu1,
            "relu2": relu2,
            "relu3": relu1
        },
    )
    debug.replace_node(relu1, relu1_debug)
    assert debug.layers[0] == relu1_debug
    assert debug.layers[1] == relu2
    assert debug.layers[2] == relu1_debug
    assert debug.get_ref("relu1") == relu1_debug
    assert debug.get_ref("relu2") == relu2
    assert debug.get_ref("relu3") == relu1_debug

    # Check that nodes are replaced recursively
    assert debug.layers[3] == relu_chain
    assert debug.layers[3].layers[0] == relu1_debug
    assert debug.layers[3].layers[1] == relu2
Esempio n. 2
0
def cnn_tagger(width: int, vector_width: int, nr_classes: int = 17):
    with Model.define_operators({">>": chain}):
        model = strings2arrays() >> with_array(
            HashEmbed(nO=width, nV=vector_width, column=0) >> expand_window(
                window_size=1) >> Relu(nO=width, nI=width * 3) >> Relu(
                    nO=width, nI=width) >> Softmax(nO=nr_classes, nI=width))
    return model
Esempio n. 3
0
def main(n_hidden: int = 256,
         dropout: float = 0.2,
         n_iter: int = 10,
         batch_size: int = 128):
    # Define the model
    model: Model = chain(
        Relu(nO=n_hidden, dropout=dropout),
        Relu(nO=n_hidden, dropout=dropout),
        Softmax(),
    )
    # Load the data
    (train_X, train_Y), (dev_X, dev_Y) = ml_datasets.mnist()
    # Set any missing shapes for the model.
    model.initialize(X=train_X[:5], Y=train_Y[:5])
    train_data = model.ops.multibatch(batch_size,
                                      train_X,
                                      train_Y,
                                      shuffle=True)
    dev_data = model.ops.multibatch(batch_size, dev_X, dev_Y)
    # Create the optimizer.
    optimizer = Adam(0.001)
    for i in range(n_iter):
        for X, Y in tqdm(train_data, leave=False):
            Yh, backprop = model.begin_update(X)
            backprop(Yh - Y)
            model.finish_update(optimizer)
        # Evaluate and print progress
        correct = 0
        total = 0
        for X, Y in dev_data:
            Yh = model.predict(X)
            correct += (Yh.argmax(axis=1) == Y.argmax(axis=1)).sum()
            total += Yh.shape[0]
        score = correct / total
        msg.row((i, f"{score:.3f}"), widths=(3, 5))
Esempio n. 4
0
def test_model_gpu():
    prefer_gpu()
    n_hidden = 32
    dropout = 0.2
    (train_X, train_Y), (dev_X, dev_Y) = ml_datasets.mnist()
    model = chain(
        Relu(nO=n_hidden, dropout=dropout),
        Relu(nO=n_hidden, dropout=dropout),
        Softmax(),
    )
    # making sure the data is on the right device
    train_X = model.ops.asarray(train_X)
    train_Y = model.ops.asarray(train_Y)
    dev_X = model.ops.asarray(dev_X)
    dev_Y = model.ops.asarray(dev_Y)

    model.initialize(X=train_X[:5], Y=train_Y[:5])
    optimizer = Adam(0.001)
    batch_size = 128

    for i in range(2):
        batches = model.ops.multibatch(batch_size, train_X, train_Y, shuffle=True)
        for X, Y in batches:
            Yh, backprop = model.begin_update(X)
            backprop(Yh - Y)
            model.finish_update(optimizer)
        # Evaluate and print progress
        correct = 0
        total = 0
        for X, Y in model.ops.multibatch(batch_size, dev_X, dev_Y):
            Yh = model.predict(X)
            correct += (Yh.argmax(axis=1) == Y.argmax(axis=1)).sum()
            total += Yh.shape[0]
Esempio n. 5
0
def test_with_debug():
    pytest.importorskip("ml_datasets")
    import ml_datasets

    (train_X, train_Y), (dev_X, dev_Y) = ml_datasets.mnist()

    counts = Counter()

    def on_init(*_):
        counts["init"] += 1

    def on_forward(*_):
        counts["forward"] += 1

    def on_backprop(*_):
        counts["backprop"] += 1

    relu = Relu()
    relu2 = with_debug(Relu(),
                       on_init=on_init,
                       on_forward=on_forward,
                       on_backprop=on_backprop)
    chained = chain(relu, relu2, relu2)
    chained.initialize(X=train_X[:5], Y=train_Y[:5])
    _, backprop = chained(X=train_X[:5], is_train=False)

    # Not real loss gradients, but we don't care for testing.
    backprop(train_Y[:5])

    # Four times forward, because initialization also applies forward for
    # validation.
    assert counts == {"init": 2, "forward": 4, "backprop": 2}
Esempio n. 6
0
def test_wrap_non_child_references():
    relu = Relu(5)
    relu2 = Relu(5)
    chained = chain(relu, relu)
    chained2 = chain(relu2, chained)
    chained2.set_ref("relu", relu)
    # Fails in case non-child references cannot be set.
    wrap_model_recursive(chained2, with_debug)
Esempio n. 7
0
def test_validation():
    model = chain(Relu(10), Relu(10), with_ragged(reduce_max()), Softmax())
    with pytest.raises(DataValidationError):
        model.initialize(X=model.ops.alloc2f(1, 10), Y=model.ops.alloc2f(1, 10))
    with pytest.raises(DataValidationError):
        model.initialize(X=model.ops.alloc3f(1, 10, 1), Y=model.ops.alloc2f(1, 10))
    with pytest.raises(DataValidationError):
        model.initialize(X=[model.ops.alloc2f(1, 10)], Y=model.ops.alloc2f(1, 10))
Esempio n. 8
0
def test_walk_dfs():
    relu = Relu(5)
    relu2 = Relu(5)
    inner_chain = chain(relu, relu2)
    chained = chain(inner_chain, inner_chain)
    assert list(
        chained.walk(order="dfs_pre")) == [chained, inner_chain, relu, relu2]
    assert list(chained.walk(order="dfs_post")) == [
        relu,
        relu2,
        inner_chain,
        chained,
    ]
Esempio n. 9
0
def test_recursive_double_wrap():
    def dummy_model(name, layers):
        return Model(name, lambda model, X, is_train:..., layers=layers)

    relu = Relu(5)
    chained = chain(relu, relu)
    concat = concatenate(chained, chained, relu)
    concat_wrapped = wrap_model_recursive(
        concat, lambda model: dummy_model(f"dummy({model.name})", [model]))

    n_debug = 0
    for model in concat_wrapped.walk():
        if model.name.startswith("dummy"):
            n_debug += 1

    # There should be 3 unique dummy wrappers:
    # * Around concatenate.
    # * Around chain.
    # * Around relu.
    assert n_debug == 3

    assert concat_wrapped.layers[0].layers[0].layers[0].layers[
        0].name == "dummy(relu)"
    assert concat_wrapped.layers[0].layers[0].layers[0].layers[
        1].name == "dummy(relu)"
    assert concat_wrapped.layers[0].layers[1].layers[0].layers[
        0].name == "dummy(relu)"
    assert concat_wrapped.layers[0].layers[1].layers[0].layers[
        1].name == "dummy(relu)"
    assert concat_wrapped.layers[0].layers[2].name == "dummy(relu)"
Esempio n. 10
0
def test_recursive_double_wrap():
    relu = Relu(5)
    chained = chain(relu, relu)
    concat = concatenate(chained, chained)
    concat_debug = wrap_model_recursive(concat, with_debug)

    n_debug = 0
    for model in concat_debug.walk():
        if model.name.startswith("debug"):
            n_debug += 1

    # There should be 5 unique debug wrappers:
    # * Around concatenate. (= 1)
    # * One around each chain in concatenate. (= 2)
    # * One around each relu in the chain. (= 2)
    assert n_debug == 5

    assert concat_debug.layers[0].layers[0].layers[0].layers[
        0].name == "debug(relu)"
    assert concat_debug.layers[0].layers[0].layers[0].layers[
        1].name == "debug(relu)"
    assert concat_debug.layers[0].layers[1].layers[0].layers[
        0].name == "debug(relu)"
    assert concat_debug.layers[0].layers[1].layers[0].layers[
        1].name == "debug(relu)"
Esempio n. 11
0
def test_validation_complex():
    good_model = chain(list2ragged(), reduce_sum(), Relu(12, dropout=0.5), Relu(1))
    X = [good_model.ops.xp.zeros((4, 75), dtype="f")]
    Y = good_model.ops.xp.zeros((1,), dtype="f")
    good_model.initialize(X, Y)
    good_model.predict(X)

    bad_model = chain(
        list2ragged(),
        reduce_sum(),
        Relu(12, dropout=0.5),
        # ERROR: Why can't I attach a Relu to an attention layer?
        ParametricAttention(12),
        Relu(1),
    )
    with pytest.raises(DataValidationError):
        bad_model.initialize(X, Y)
Esempio n. 12
0
def build_text_classifier_lowdata(
        width: int,
        dropout: Optional[float],
        nO: Optional[int] = None) -> Model[List[Doc], Floats2d]:
    # Don't document this yet, I'm not sure it's right.
    # Note, before v.3, this was the default if setting "low_data" and "pretrained_dims"
    with Model.define_operators({">>": chain, "**": clone}):
        model = (StaticVectors(width) >> list2ragged() >>
                 ParametricAttention(width) >> reduce_sum() >> residual(
                     Relu(width, width))**2 >> Linear(nO, width))
        if dropout:
            model = model >> Dropout(dropout)
        model = model >> Logistic()
    return model
def test_infer_output_shape():
    model = Relu(dropout=0.2)
    X = model.ops.alloc2f(4, 5)
    Y = model.ops.alloc2f(4, 2)
    assert model.has_dim("nI") is None
    assert model.has_dim("nO") is None
    model.initialize(X=X, Y=Y)
    assert model.get_dim("nI") == 5
    assert model.get_dim("nO") == 2
Esempio n. 14
0
def test_recursive_wrap():
    # Check:
    #
    # * Recursion: chain -> relu
    # * Multiple sublayers: chain -> [relu, relu]

    relu = Relu(5)
    chained = chain(relu, relu)
    chained_debug = wrap_model_recursive(chained, with_debug)

    assert chained_debug.name == "debug(relu>>relu)"
    assert chained_debug.layers[0] is chained
    assert chained_debug.layers[0].layers[0].name == "debug(relu)"
    assert chained_debug.layers[0].layers[0].layers[0] is relu
    assert chained_debug.layers[0].layers[1].name == "debug(relu)"
    assert chained_debug.layers[0].layers[1].layers[0] is relu
Esempio n. 15
0
def test_spancat_model_forward_backward(nO=5):
    tok2vec = build_Tok2Vec_model(**get_tok2vec_kwargs())
    docs = get_docs()
    spans_list = []
    lengths = []
    for doc in docs:
        spans_list.append(doc[:2])
        spans_list.append(doc[1:4])
        lengths.append(2)
    spans = Ragged(
        tok2vec.ops.asarray([[s.start, s.end] for s in spans_list], dtype="i"),
        tok2vec.ops.asarray(lengths, dtype="i"),
    )
    model = build_spancat_model(tok2vec, reduce_mean(),
                                chain(Relu(nO=nO),
                                      Logistic())).initialize(X=(docs, spans))

    Y, backprop = model((docs, spans), is_train=True)
    assert Y.shape == (spans.dataXd.shape[0], nO)
    backprop(Y)
Esempio n. 16
0
def test_recursive_wrap():
    def dummy_model(name, layers):
        return Model(name, lambda model, X, is_train:..., layers=layers)

    # Check:
    #
    # * Recursion: chain -> relu
    # * Multiple sublayers: chain -> [relu, relu]

    relu = Relu(5)
    chained = chain(relu, relu)
    chained_debug = wrap_model_recursive(
        chained, lambda model: dummy_model(f"dummy({model.name})", [model]))

    assert chained_debug.name == "dummy(relu>>relu)"
    assert chained_debug.layers[0] is chained
    assert chained_debug.layers[0].layers[0].name == "dummy(relu)"
    assert chained_debug.layers[0].layers[0].layers[0] is relu
    assert chained_debug.layers[0].layers[1].name == "dummy(relu)"
    assert chained_debug.layers[0].layers[1].layers[0] is relu
Esempio n. 17
0
def create_relu_softmax(width, dropout, nI, nO):
    return chain(clone(Relu(nO=width, dropout=dropout), 2), Softmax(10, width))
Esempio n. 18
0
def test_walk_bfs_post_order_fails():
    relu = Relu(5)
    with pytest.raises(ValueError, match="Invalid order"):
        relu.walk(order="dfs_post_order")
from thinc.api import chain, Relu, reduce_max, Softmax, add

good_model = chain(Relu(10), Relu(10), Softmax())
reveal_type(good_model)

good_model2 = add(Relu(10), Relu(10), Softmax())
reveal_type(good_model2)

bad_model_undetected = chain(Relu(10), Relu(10), reduce_max(), Softmax())
reveal_type(bad_model_undetected)

bad_model_undetected2 = add(Relu(10), Relu(10), reduce_max(), Softmax())
reveal_type(bad_model_undetected2)
def model1(nH, nI):
    model = Relu(nH, nI).initialize()
    return model
Esempio n. 21
0
from thinc.api import chain, Relu, reduce_max, Softmax, add, concatenate

bad_model = chain(Relu(10), reduce_max(), Softmax())

bad_model2 = add(Relu(10), reduce_max(), Softmax())

bad_model_only_plugin = chain(Relu(10), Relu(10), Relu(10), Relu(10),
                              reduce_max(), Softmax())

bad_model_only_plugin2 = add(Relu(10), Relu(10), Relu(10), Relu(10),
                             reduce_max(), Softmax())
reveal_type(bad_model_only_plugin2)

bad_model_only_plugin3 = concatenate(Relu(10), Relu(10), Relu(10), Relu(10),
                                     reduce_max(), Softmax())

reveal_type(bad_model_only_plugin3)
def create_embed_relu_relu_softmax(depth, width, vector_length):
    with Model.define_operators({">>": chain}):
        model = strings2arrays() >> with_array(
            HashEmbed(width, vector_length) >> expand_window(window_size=1) >>
            Relu(width, width * 3) >> Relu(width, width) >> Softmax(17, width))
    return model
from thinc.api import chain, Relu, reduce_max, Softmax, add

bad_model = chain(Relu(10), reduce_max(), Softmax())

bad_model2 = add(Relu(10), reduce_max(), Softmax())