Esempio n. 1
0
def CH7_1():
    """
    球队2010-2011赛季, 平均每场进球的分布, 大致为均值2.8, 标准差为0.3的高斯分布
    """
    pmf = thinkbayes.MakeGaussianPmf(2.8, 0.3, 4, n=101)
    thinkplot.Clf()
    thinkplot.Pmf(pmf)
    thinkplot.Show();
Esempio n. 2
0
    def __init__(self, exam, score):
        self.exam = exam
        self.score = score

        # start with the Gaussian prior
        efficacies = thinkbayes.MakeGaussianPmf(0, 1.5, 3)
        thinkbayes.Suite.__init__(self, efficacies)

        # update based on an exam score
        self.Update(score)
Esempio n. 3
0
    def __init__(self, name=''):
        """Initializes the Hockey object.

        name: string
        """
        if USE_SUMMARY_DATA:
            # prior based on each team's average goals scored
            mu = 2.8
            sigma = 0.3
        else:
            # prior based on each pair-wise match-up
            mu = 2.8
            sigma = 0.85

        pmf = thinkbayes.MakeGaussianPmf(mu, sigma, 4)
        thinkbayes.Suite.__init__(self, pmf, name=name)
Esempio n. 4
0
    def CalibrateDifficulty(self):
        """Make a plot showing the model distribution of raw scores."""
        thinkplot.Clf()
        thinkplot.PrePlot(num=2)

        cdf = thinkbayes.MakeCdfFromPmf(self.raw, name='data')
        thinkplot.Cdf(cdf)

        efficacies = thinkbayes.MakeGaussianPmf(0, 1.5, 3)
        pmf = self.MakeRawScoreDist(efficacies)
        cdf = thinkbayes.MakeCdfFromPmf(pmf, name='model')
        thinkplot.Cdf(cdf)

        thinkplot.Save(root='sat_calibrate',
                       xlabel='raw score',
                       ylabel='CDF',
                       formats=['pdf', 'eps'])
Esempio n. 5
0
    def __init__(self, mu, sigma, name=''):
        """
		"""

        pmf = thinkbayes.MakeGaussianPmf(mu, sigma, 1)
        thinkbayes.Suite.__init__(self, pmf, name=name)