Esempio n. 1
0
 def _MixPmf(suite):
     high = 10
     metapmf = thinkbayes.Pmf()
     for lam, prob in suite.Items():
         pmf = thinkbayes.MakePoissonPmf(lam, high, step=1)
         metapmf.Set(pmf, y=prob)
     return thinkbayes.MakeMixture(metapmf, name='mix')
Esempio n. 2
0
def CH7_2():
    """
    http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html
    1. 一场比赛平均进球数为lam, 每场比赛进球分布: 泊松分布
            (进球可以在任何时间点发生)
        eg. 某医院平均每小时出生3个婴儿


        重点是: 次数

    2. 进球间隔的分布: 指数分布
        eg. 某医院婴儿出生的时间间隔(20分钟一个(0.3h))

        重点是: 间隔

    泊松分布是单位时间内独立事件发生次数的概率分布 
    指数分布是独立事件的时间间隔的概率分布
    """
    # 单位时间内出生1 - 10个婴儿的泊松分布
    pmf = thinkbayes.MakePoissonPmf(3, 10, step=1)
    thinkplot.Clf()
    thinkplot.Pmf(pmf)
    #  thinkplot.Show();

    # 婴儿出生时间间隔(20分钟)
    pmf = thinkbayes.MakeExponentialPmf(0.3, 10, n=200)
    thinkplot.Clf()
    thinkplot.Pmf(pmf)
    thinkplot.Show();
Esempio n. 3
0
def CH7_4(show = 1):
    """
    混合分布
    """
    suite1, suite2 = CH7_3(0)

    # 均值:
    mu1 = suite1.Mean()
    mu2 = suite2.Mean()
    print("Mean1: ", mu1)
    print("Mean2: ", mu2)


    if show:
        # 使用均值, 计算泊松分布 (下一场比赛进球分布)
        pos1 = thinkbayes.MakePoissonPmf(mu1, 10, step=1)
        pos2 = thinkbayes.MakePoissonPmf(mu2, 10, step=1)

        thinkplot.Clf()
        thinkplot.PrePlot(num=2)
        thinkplot.Pmfs([pos1, pos2])
        thinkplot.Show(title='Poisson', xlabel='Goals per game', ylabel='Probability')

    # 混合分布
    def _MixPmf(suite):
        high = 10
        metapmf = thinkbayes.Pmf()
        for lam, prob in suite.Items():
            pmf = thinkbayes.MakePoissonPmf(lam, high, step=1)
            metapmf.Set(pmf, y=prob)
        return thinkbayes.MakeMixture(metapmf, name='mix')

    mix1 = _MixPmf(suite1)
    mix2 = _MixPmf(suite2)
    
    if show:
        thinkplot.Clf()
        thinkplot.PrePlot(num=2)
        thinkplot.Pmfs([mix1, mix2])
        thinkplot.Show(title='Mixture', xlabel='Goals per game', ylabel='Probability')

    return mix1, mix2
Esempio n. 4
0
    def __init__(self, r, f, high=500, step=5):
        """Initializes the suite.

        r: known emission rate, r
        f: fraction of particles registered
        high: maximum number of particles, n
        step: step size between hypothetical values of n
        """
        pmf = thinkbayes.MakePoissonPmf(r, high, step=step)
        thinkbayes.Suite.__init__(self, pmf, name=r)
        self.r = r
        self.f = f
Esempio n. 5
0
def MakeGoalPmf(suite, high=10):
    """Makes the distribution of goals scored, given distribution of lam.

    suite: distribution of goal-scoring rate
    high: upper bound

    returns: Pmf of goals per game
    """
    metapmf = thinkbayes.Pmf()

    for lam, prob in suite.Items():
        pmf = thinkbayes.MakePoissonPmf(lam, high)
        metapmf.Set(pmf, prob)

    mix = thinkbayes.MakeMixture(metapmf, name=suite.name)
    return mix