def test_pytorch_grid():
    c_dst = np.array([
        [0., 0],
        [1., 0],
        [1, 1],
        [0, 1],
    ], dtype=np.float32)

    c_src = np.array([
        [10., 10],
        [20., 10],
        [20, 20],
        [10, 20],
    ],
                     dtype=np.float32) / 40.

    theta = tps.tps_theta_from_points(c_src, c_dst)
    theta_r = tps.tps_theta_from_points(c_src, c_dst, reduced=True)

    np_grid = tps.tps_grid(theta, c_dst, (20, 20))
    np_grid_r = tps.tps_grid(theta_r, c_dst, (20, 20))

    pth_theta = torch.tensor(theta).unsqueeze(0)
    pth_grid = tps.torch.tps_grid(pth_theta, torch.tensor(c_dst),
                                  (1, 1, 20, 20)).squeeze().numpy()
    pth_grid = (pth_grid + 1) / 2  # convert [-1,1] range to [0,1]

    pth_theta_r = torch.tensor(theta_r).unsqueeze(0)
    pth_grid_r = tps.torch.tps_grid(pth_theta_r, torch.tensor(c_dst),
                                    (1, 1, 20, 20)).squeeze().numpy()
    pth_grid_r = (pth_grid_r + 1) / 2  # convert [-1,1] range to [0,1]

    assert_allclose(np_grid, pth_grid)
    assert_allclose(np_grid_r, pth_grid_r)
    assert_allclose(np_grid_r, np_grid)
def tps_transform(img, dshape=None):

    while True:
        point1 = round(random.uniform(0.3, 0.7), 2)
        point2 = round(random.uniform(0.3, 0.7), 2)
        range_1 = round(random.uniform(-0.25, 0.25), 2)
        range_2 = round(random.uniform(-0.25, 0.25), 2)
        if math.isclose(point1 + range_1, point2 + range_2):
            continue
        else:
            break

    c_src = np.array([
        [0.0, 0.0],
        [1., 0],
        [1, 1],
        [0, 1],
        [point1, point1],
        [point2, point2],
    ])

    c_dst = np.array([
        [0., 0],
        [1., 0],
        [1, 1],
        [0, 1],
        [point1 + range_1, point1 + range_1],
        [point2 + range_2, point2 + range_2],
    ])

    dshape = dshape or img.shape
    theta = tps.tps_theta_from_points(c_src, c_dst, reduced=True)
    grid = tps.tps_grid(theta, c_dst, dshape)
    mapx, mapy = tps.tps_grid_to_remap(grid, img.shape)
    return cv2.remap(img, mapx, mapy, cv2.INTER_CUBIC)
Esempio n. 3
0
def warp_dual_cv(img, mask, c_src, c_dst):
    dshape = img.shape
    theta = tps.tps_theta_from_points(c_src, c_dst, reduced=True)
    grid = tps.tps_grid(theta, c_dst, dshape)
    mapx, mapy = tps.tps_grid_to_remap(grid, img.shape)
    return cv2.remap(img, mapx, mapy,
                     cv2.INTER_LINEAR), cv2.remap(mask, mapx, mapy,
                                                  cv2.INTER_NEAREST)
Esempio n. 4
0
def test_numpy_densegrid():

    # enlarges a small rectangle to full view

    import cv2

    img = np.zeros((40, 40), dtype=np.uint8)
    img[10:21, 10:21] = 255

    c_dst = np.array([
        [0., 0],
        [1., 0],
        [1, 1],
        [0, 1],
    ])

    c_src = np.array([
        [10., 10],
        [20., 10],
        [20, 20],
        [10, 20],
    ]) / 40.

    theta = tps.tps_theta_from_points(c_src, c_dst)
    theta_r = tps.tps_theta_from_points(c_src, c_dst, reduced=True)

    grid = tps.tps_grid(theta, c_dst, (20, 20))
    grid_r = tps.tps_grid(theta_r, c_dst, (20, 20))

    mapx, mapy = tps.tps_grid_to_remap(grid, img.shape)
    warped = cv2.remap(img, mapx, mapy, cv2.INTER_CUBIC)

    assert img.min() == 0.
    assert img.max() == 255.
    assert warped.shape == (20, 20)
    assert warped.min() == 255.
    assert warped.max() == 255.
    assert np.linalg.norm(grid.reshape(-1, 2) - grid_r.reshape(-1, 2)) < 1e-3
Esempio n. 5
0
    def get_tps_thetas(self, num_images):
        c_src = np.array([
            [0.0, 0.0],
            [1., 0],
            [1, 1],
            [0, 1],
            [0.2, 0.3],
            [0.6, 0.7],
        ])

        theta_list = []
        dst_list = []
        for i in range(num_images):
            c_dst = c_src + np.random.uniform(-1, 1, (6, 2)) / 20

            theta = tps.tps_theta_from_points(c_src, c_dst)
            theta_list.append(torch.from_numpy(theta).unsqueeze(0))
            dst_list.append(torch.from_numpy(c_dst).unsqueeze(0))

        theta = torch.cat(theta_list, dim=0).float()
        dst = torch.cat(dst_list, dim=0).float()
        return theta, dst
Esempio n. 6
0
def warp_image_cv(img, c_src, c_dst, dshape=None):
    dshape = dshape or img.shape
    theta = tps.tps_theta_from_points(c_src, c_dst, reduced=True)
    grid = tps.tps_grid(theta, c_dst, dshape)
    mapx, mapy = tps.tps_grid_to_remap(grid, img.shape)
    return cv2.remap(img, mapx, mapy, cv2.INTER_CUBIC)