def test_simu_hawkes_multi_time_func(self):
        """...Test that hawkes multi works correctly with HawkesKernelTimeFunc
        """
        run_time = 100

        t_values1 = np.array([0, 1, 1.5], dtype=float)
        y_values1 = np.array([0, .2, 0], dtype=float)
        tf1 = TimeFunction([t_values1, y_values1],
                           inter_mode=TimeFunction.InterConstRight,
                           dt=0.1)
        kernel1 = HawkesKernelTimeFunc(tf1)

        t_values2 = np.array([0, 2, 2.5], dtype=float)
        y_values2 = np.array([0, .6, 0], dtype=float)
        tf2 = TimeFunction([t_values2, y_values2],
                           inter_mode=TimeFunction.InterConstRight,
                           dt=0.1)
        kernel2 = HawkesKernelTimeFunc(tf2)

        baseline = np.array([0.1, 0.3])

        hawkes = SimuHawkes(baseline=baseline,
                            end_time=run_time,
                            verbose=False,
                            seed=2334)

        hawkes.set_kernel(0, 0, kernel1)
        hawkes.set_kernel(0, 1, kernel1)
        hawkes.set_kernel(1, 0, kernel2)
        hawkes.set_kernel(1, 1, kernel2)

        hawkes_multi = SimuHawkesMulti(hawkes, n_simulations=5, n_threads=4)
        hawkes_multi.simulate()
Esempio n. 2
0
    def test_HawkesKernelTimeFunc_time_function(self):
        """...Test HawkesKernelTimeFunc time_function parameter
        """
        t_values = np.linspace(-1, 100, 1000)
        np.testing.assert_array_equal(
            self.hawkes_kernel_time_func.time_function.value(t_values),
            self.time_function.value(t_values))

        self.hawkes_kernel_time_func = \
            HawkesKernelTimeFunc(t_values=self.t_values, y_values=self.y_values)
        np.testing.assert_array_equal(
            self.hawkes_kernel_time_func.time_function.value(t_values),
            self.time_function.value(t_values))
Esempio n. 3
0
def TrainInnerClusterEM(clusters, k_time=1, k_size=100):
    #merge all the clusters, the learner seems to only be able to fit a single long datastream
    num_clusters = len(clusters)
    data = ConcatClusters(clusters, 0)

    #kernel size is the granularity
    #kernel support is something... (is it the size of each step?)
    em_learner = HawkesEM(kernel_support=k_time,
                          kernel_size=k_size,
                          n_threads=8,
                          verbose=True,
                          tol=1e-5,
                          max_iter=1000)
    em_learner.fit(data)
    """#train the em learner on each cluster
    cluster_num = 0
    for cluster in clusters:
        if (cluster_num % 10 == 0):
            #print out training progress
            s = f"Cluster: {cluster_num}/{num_clusters}"
            print(f"\r{' '*l}\r", end='')
            print(f"Cluster: {cluster_num}/{num_clusters}", end='', flush=True)
            l = len(s)
        print(em_learner.baseline)
        print(em_learner.kernel)
        print("==========")
        if (cluster_num == 0):
            em_learner.fit(cluster)
        else:
            em_learner.fit(cluster, baseline_start=em_learner.baseline, kernel_start=em_learner.kernel)
        cluster_num += 1"""
    #maybe add variation in kernel sie later?
    #use em_learner.score() to evaluate goodness
    print(f"\nEM Score: {em_learner.score()}")
    fig = plot_hawkes_kernels(em_learner)  #TODO, remove this?

    t = np.linspace(0, k_time, endpoint=False, num=k_size)

    m = []
    for i in range(2):
        for j in range(2):
            m.append(max(em_learner.kernel[i][j]))
    #normalise to make a proper hawkes process
    spectral_radius = max(m)
    if (spectral_radius < 1):
        spectral_radius = 1

    #create a 2x2 array of time func kernels
    k = [[], []]
    for i in range(2):
        for j in range(2):
            k[i].append(
                HawkesKernelTimeFunc(t_values=t,
                                     y_values=em_learner.kernel[i][j] /
                                     np.linalg.norm(em_learner.kernel[i][j])))

    #return k, em_learner.baseline #the kernel, baseline
    return em_learner
    def test_HawkesKernelTimeFunc_pickle(self):
        """...Test pickling ability of HawkesKernelTimeFunc
        """
        size = 10
        y_values = np.random.rand(size)
        t_values = np.arange(size, dtype=float)
        time_function = TimeFunction([t_values, y_values])
        obj = HawkesKernelTimeFunc(time_function)

        pickled = pickle.loads(pickle.dumps(obj))

        self.assertEqual(obj.time_function.value(1),
                         pickled.time_function.value(1))
        self.assertEqual(obj.time_function.value(2),
                         pickled.time_function.value(2))
        self.assertEqual(obj.time_function.value(1.5),
                         pickled.time_function.value(1.5))
        self.assertEqual(obj.time_function.value(0.75),
                         pickled.time_function.value(0.75))
        np.testing.assert_array_equal(obj.get_values(self.random_times),
                                      obj.get_values(self.random_times))
Esempio n. 5
0
    def simulate_hawkes(self, model_name):
        self.model_name = model_name

        def y_func_pos(t_values):
            y_values = 0.02 * np.exp(-t_values)
            return y_values

        def y_func_neg(t_values):
            y_values = -0.1 * np.exp(-t_values)
            return y_values

        if model_name == 'hawkes_neg':
            y_func = y_func_neg
        elif model_name == 'hawkes_pos':
            y_func = y_func_pos

        t_values = np.linspace(0, 101, 100)
        y_values = y_func(t_values)
        tf = TimeFunction([t_values, y_values],
                          inter_mode=TimeFunction.InterLinear,
                          dt=0.1)

        tf_kernel = HawkesKernelTimeFunc(tf)

        N_enodes = self.G_e2n.number_of_nodes()  # regarded as 'N_enodes' types

        base_int = 0.2
        baselines = [base_int for i in range(N_enodes)]
        kernels = [[] for i in range(N_enodes)]
        for i in range(N_enodes):
            for j in range(N_enodes):
                if i == j:
                    # kernels[i].append(HawkesKernel0())
                    kernels[i].append(HawkesKernelExp(.1, 4))  # self influence
                else:
                    if self.G_e2n.has_edge(self.idx_elabel_map[i],
                                           self.idx_elabel_map[j]):
                        kernels[i].append(tf_kernel)
                    else:
                        kernels[i].append(HawkesKernel0())

        hawkes = SimuHawkes(kernels=kernels,
                            baseline=baselines,
                            verbose=False,
                            seed=self.seed)
        hawkes.threshold_negative_intensity(allow=True)

        run_time = 100
        hawkes.end_time = run_time
        hawkes.simulate()
        timestamps = hawkes.timestamps

        self.save(timestamps, self.model_name)
Esempio n. 6
0
    def setUp(self):
        np.random.seed(28374)

        self.kernels = np.array([
            [HawkesKernel0(), HawkesKernelExp(0.1, 3)],
            [HawkesKernelPowerLaw(0.2, 4, 2),
             HawkesKernelSumExp([0.1, 0.4], [3, 4])]
        ])

        t_values = np.linspace(0, 10, 10)
        y_values = np.maximum(0.5 + np.sin(t_values), 0)
        self.time_func_kernel = HawkesKernelTimeFunc(t_values=t_values,
                                                     y_values=y_values)

        self.baseline = np.random.rand(2)
def goodness_of_fit_nonpar(nplearner, arrivals, timestep, method):
    # setup simulation object
    hp = SimuHawkes(baseline=nplearner.baseline)
    # set kernels
    support = np.arange(0, np.max(nplearner.get_kernel_supports()), timestep)

    for i, j in itertools.product(range(nplearner.n_nodes), repeat=2):
        print('Kernel {} set.'.format([i, j]))
        y = nplearner.get_kernel_values(i, j, support)
        kernel = HawkesKernelTimeFunc(t_values=support, y_values=y)
        hp.set_kernel(i, j, kernel)

    hp.track_intensity(timestep)
    hp.set_timestamps(timestamps=arrivals)
    dimension = hp.n_nodes
    intensities = hp.tracked_intensity
    x = hp.intensity_tracked_times
    residuals = [resid(x, intensities, arrivals, dim, method) for dim in range(dimension)]
    return residuals
    def test_simu_hawkes_no_seed(self):
        """...Test hawkes multi can be simulated even if no seed is given
        """
        T1 = np.array([0, 2, 2.5], dtype=float)
        Y1 = np.array([0, .6, 0], dtype=float)
        tf = TimeFunction([T1, Y1],
                          inter_mode=TimeFunction.InterConstRight,
                          dt=0.1)
        kernel = HawkesKernelTimeFunc(tf)
        hawkes = SimuHawkes(baseline=[.1], end_time=100, verbose=False)
        hawkes.set_kernel(0, 0, kernel)
        multi_hawkes_1 = SimuHawkesMulti(hawkes, n_simulations=5)
        multi_hawkes_1.simulate()

        multi_hawkes_2 = SimuHawkesMulti(hawkes, n_simulations=5)
        multi_hawkes_2.simulate()

        # If no seed are given, realizations must be different
        self.assertNotEqual(multi_hawkes_1.timestamps[0][0][0],
                            multi_hawkes_2.timestamps[0][0][0])
Esempio n. 9
0
    def MakeTimeKernel(self, kernel):
        #check the spectral radius
        m = []
        for process in kernel:
            for intensity in process:
                m.append(max(intensity))
        self.spectral_radius = max(m)
        if (self.spectral_radius > 1):
            #oh no
            self.time_kernel = None
            return

        #create a time kernel for simulation
        t = np.linspace(0, self.k_time, endpoint=False, num=self.k_size)
        k = []
        for process in kernel:
            for intensity in process:
                k.append(HawkesKernelTimeFunc(t_values=t, y_values=intensity))

        k = np.reshape(k, kernel.shape[:2])
        self.time_kernel = k
Esempio n. 10
0
class Test(unittest.TestCase):
    def setUp(self):
        size = 10
        self.y_values = np.random.rand(size)
        self.t_values = np.arange(size, dtype=float)
        self.time_function = TimeFunction([self.t_values, self.y_values])
        self.hawkes_kernel_time_func = HawkesKernelTimeFunc(self.time_function)

    def test_HawkesKernelTimeFunc_time_function(self):
        """...Test HawkesKernelTimeFunc time_function parameter
        """
        t_values = np.linspace(-1, 100, 1000)
        np.testing.assert_array_equal(
            self.hawkes_kernel_time_func.time_function.value(t_values),
            self.time_function.value(t_values))

        self.hawkes_kernel_time_func = \
            HawkesKernelTimeFunc(t_values=self.t_values, y_values=self.y_values)
        np.testing.assert_array_equal(
            self.hawkes_kernel_time_func.time_function.value(t_values),
            self.time_function.value(t_values))

    def test_HawkesKernelTimeFunc_str(self):
        """...Test HawkesKernelTimeFunc string representation
        """
        self.assertEqual(str(self.hawkes_kernel_time_func), "KernelTimeFunc")

    def test_HawkesKernelTimeFunc_repr(self):
        """...Test HawkesKernelTimeFunc string in list representation
        """
        self.assertEqual(str([self.hawkes_kernel_time_func]),
                         "[KernelTimeFunc]")

    def test_HawkesKernelTimeFunc_strtex(self):
        """...Test HawkesKernelTimeFunc string representation
        """
        self.assertEqual(self.hawkes_kernel_time_func.__strtex__(),
                         "TimeFunc Kernel")
Esempio n. 11
0
plot_timefunction(tf_1)

# %% [markdown]
# ![Tick_Figure_1_0_TF.png](attachment:7ec4d7d7-df41-4fc7-9238-6aa7396b1c67.png)

# %% Plot tf_2
plot_timefunction(tf_2)

# %% [markdown]
# ![Tick_Figure_2_t0_TF.png](attachment:0d61b956-0013-41ad-877d-698cc574ff6d.png)

# %% [markdown]
# ## Defining Non-parametric Kernels

# %% Define kernel_1
kernel_1 = HawkesKernelTimeFunc(tf_1)

# %% Define kernel_2
kernel_2 = HawkesKernelTimeFunc(tf_2)

# %% [markdown]
# ## Defining Parametric Kernels

# %% Define kernel_sumexp
# kernel_sumexp = HawkesKernelSumExp(
#     intensities=np.array([0.1, 0.2, 0.1]),
#     decays=np.array([1.0, 3.0, 7.0]))

# %% [markdown]
# ## Simulations
Simulation of Hawkes processes with usage of custom kernels
"""

import matplotlib.pyplot as plt
import numpy as np

from tick.base import TimeFunction
from tick.hawkes import SimuHawkes, HawkesKernelExp, HawkesKernelTimeFunc
from tick.plot import plot_point_process

t_values = np.array([0, 1, 1.5], dtype=float)
y_values = np.array([0, .2, 0], dtype=float)
tf1 = TimeFunction([t_values, y_values],
                   inter_mode=TimeFunction.InterConstRight,
                   dt=0.1)
kernel_1 = HawkesKernelTimeFunc(tf1)

t_values = np.array([0, .1, 2], dtype=float)
y_values = np.array([0, .4, -0.2], dtype=float)
tf2 = TimeFunction([t_values, y_values],
                   inter_mode=TimeFunction.InterLinear,
                   dt=0.1)
kernel_2 = HawkesKernelTimeFunc(tf2)

hawkes = SimuHawkes(kernels=[[kernel_1, kernel_1],
                             [HawkesKernelExp(.07, 4), kernel_2]],
                    baseline=[1.5, 1.5],
                    verbose=False,
                    seed=23983)

run_time = 40
    return np.cos(np.pi * t / 10) + 1.1


def g2(t):
    return np.cos(np.pi * (t / 10 + 1)) + 1.1


t_values = np.linspace(0, 20, 1000)
u_values = [(0.007061, 0.001711), (0.005445, 0.003645), (0.003645, 0.005445),
            (0.001790, 0.007390)]

hawkes = SimuHawkes(baseline=[1e-5, 1e-5], seed=1093, verbose=False)
for i, j in itertools.product(range(2), repeat=2):
    u1, u2 = u_values[2 * i + j]
    y_values = g1(t_values) * u1 + g2(t_values) * u2
    kernel = HawkesKernelTimeFunc(t_values=t_values, y_values=y_values)
    hawkes.set_kernel(i, j, kernel)

hawkes.end_time = end_time
hawkes.simulate()
ticks = hawkes.timestamps

# And then perform estimation with two basis kernels
kernel_support = 20
n_basis = 2

em = HawkesBasisKernels(kernel_support,
                        n_basis=n_basis,
                        kernel_size=kernel_size,
                        C=C,
                        n_threads=4,
Esempio n. 14
0
 def setUp(self):
     size = 10
     self.y_values = np.random.rand(size)
     self.t_values = np.arange(size, dtype=float)
     self.time_function = TimeFunction([self.t_values, self.y_values])
     self.hawkes_kernel_time_func = HawkesKernelTimeFunc(self.time_function)
Esempio n. 15
0
def test_HawkesEM():

    print('\n##############################')
    print('\nstarting: test_HawkesEM()\n')

    run_time = 30000

    t_values1 = np.array([0, 1, 1.5, 2., 3.5], dtype=float)
    y_values1 = np.array([0, 0.2, 0, 0.1, 0.], dtype=float)
    tf1 = TimeFunction([t_values1, y_values1],
                       inter_mode=TimeFunction.InterConstRight,
                       dt=0.1)
    kernel1 = HawkesKernelTimeFunc(tf1)

    t_values2 = np.linspace(0, 4, 20)
    y_values2 = np.maximum(0., np.sin(t_values2) / 4)
    tf2 = TimeFunction([t_values2, y_values2])
    kernel2 = HawkesKernelTimeFunc(tf2)

    baseline = np.array([0.1, 0.3])

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    realizations = list()
    for i in range(0, 1000):

        print('')

        temp_seed = int(1000 + 1000 * random.random())
        print('i = ' + str(i) + ', temp_seed = ' + str(temp_seed))

        hawkes = SimuHawkes(baseline=baseline,
                            end_time=run_time,
                            verbose=False,
                            seed=temp_seed)
        hawkes.set_kernel(0, 0, kernel1)
        hawkes.set_kernel(0, 1, HawkesKernelExp(.5, .7))
        hawkes.set_kernel(1, 1, kernel2)
        hawkes.simulate()

        temp_realization = hawkes.timestamps
        print('i = ' + str(i) + ', ' + 'event counts = (' +
              str(len(temp_realization[0])) + ',' +
              str(len(temp_realization[1])) + ')')
        print(temp_realization)

        realizations.append(temp_realization)

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    em = HawkesEM(4, kernel_size=16, n_threads=8, verbose=False, tol=1e-3)
    em.fit(events=realizations)

    fig = plot_hawkes_kernels(em, hawkes=hawkes, show=False)

    outputFILE = 'test-HawkesEM.png'
    for ax in fig.axes:
        ax.set_ylim([0, 1])
    plt.savefig(fname=outputFILE, bbox_inches='tight', pad_inches=0.2)

    ### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
    print('\nexitng: test_HawkesEM()')
    print('\n##############################')

    return (None)
Esempio n. 16
0
import numpy as np
import matplotlib.pyplot as plt

from tick.hawkes import (SimuHawkes, HawkesKernelTimeFunc, HawkesKernelExp,
                         HawkesEM)
from tick.base import TimeFunction
from tick.plot import plot_hawkes_kernels

run_time = 30000

t_values1 = np.array([0, 1, 1.5, 2., 3.5], dtype=float)
y_values1 = np.array([0, 0.2, 0, 0.1, 0.], dtype=float)
tf1 = TimeFunction([t_values1, y_values1],
                   inter_mode=TimeFunction.InterConstRight,
                   dt=0.1)
kernel1 = HawkesKernelTimeFunc(tf1)

t_values2 = np.linspace(0, 4, 20)
y_values2 = np.maximum(0., np.sin(t_values2) / 4)
tf2 = TimeFunction([t_values2, y_values2])
kernel2 = HawkesKernelTimeFunc(tf2)

baseline = np.array([0.1, 0.3])

hawkes = SimuHawkes(baseline=baseline,
                    end_time=run_time,
                    verbose=False,
                    seed=2334)

hawkes.set_kernel(0, 0, kernel1)
hawkes.set_kernel(0, 1, HawkesKernelExp(.5, .7))
Esempio n. 17
0
import numpy as np

from tick.plot import plot_hawkes_kernels
from tick.hawkes import (SimuHawkes, SimuHawkesMulti, HawkesKernelExp,
                         HawkesKernelTimeFunc, HawkesKernelPowerLaw,
                         HawkesKernel0, HawkesSumGaussians)

end_time = 1000
n_nodes = 2
n_realizations = 10
n_gaussians = 5

timestamps_list = []

kernel_timefunction = HawkesKernelTimeFunc(
    t_values=np.array([0., .7, 2.5, 3., 4.]),
    y_values=np.array([.3, .03, .03, .2, 0.]))
kernels = [[HawkesKernelExp(.2, 2.),
            HawkesKernelPowerLaw(.2, .5, 1.3)],
           [HawkesKernel0(), kernel_timefunction]]

hawkes = SimuHawkes(baseline=[.5, .2],
                    kernels=kernels,
                    end_time=end_time,
                    verbose=False,
                    seed=1039)

multi = SimuHawkesMulti(hawkes, n_simulations=n_realizations)

multi.simulate()