def compare_solver_sdca(self): """...Compare SDCA solution with SVRG solution """ np.random.seed(12) n_samples = Test.n_samples n_features = Test.n_features for fit_intercept in [True, False]: y, X, coeffs0, interc0 = TestSolver.generate_logistic_data( n_features, n_samples) model = ModelLogReg(fit_intercept=fit_intercept).fit(X, y) ratio = 0.5 l_enet = 1e-2 # SDCA "elastic-net" formulation is different from elastic-net # implementation l_l2_sdca = ratio * l_enet l_l1_sdca = (1 - ratio) * l_enet sdca = SDCA(l_l2sq=l_l2_sdca, max_iter=100, verbose=False, tol=0, seed=Test.sto_seed).set_model(model) prox_l1 = ProxL1(l_l1_sdca) sdca.set_prox(prox_l1) coeffs_sdca = sdca.solve() # Compare with SVRG svrg = SVRG(max_iter=100, verbose=False, tol=0, seed=Test.sto_seed).set_model(model) prox_enet = ProxElasticNet(l_enet, ratio) svrg.set_prox(prox_enet) coeffs_svrg = svrg.solve(step=0.1) np.testing.assert_allclose(coeffs_sdca, coeffs_svrg)
def test_solver_sdca(self): """...Check SDCA solver for a Logistic regression with Ridge penalization and L1 penalization """ solver = SDCA(l_l2sq=1e-5, max_iter=100, verbose=False, tol=0) self.check_solver(solver, fit_intercept=False, model="logreg", decimal=1)
def test_sdca_identity_poisreg(self): """...Test SDCA on specific case of Poisson regression with indentity link """ l_l2sq = 1e-3 n_samples = 10000 n_features = 3 np.random.seed(123) weight0 = np.random.rand(n_features) features = np.random.rand(n_samples, n_features) for intercept in [None, 0.45]: if intercept is None: fit_intercept = False else: fit_intercept = True simu = SimuPoisReg(weight0, intercept=intercept, features=features, n_samples=n_samples, link='identity', verbose=False) features, labels = simu.simulate() model = ModelPoisReg(fit_intercept=fit_intercept, link='identity') model.fit(features, labels) sdca = SDCA(l_l2sq=l_l2sq, max_iter=100, verbose=False, tol=1e-14, seed=Test.sto_seed) sdca.set_model(model).set_prox(ProxZero()) start_dual = np.sqrt(sdca._rand_max * l_l2sq) start_dual = start_dual * np.ones(sdca._rand_max) sdca.solve(start_dual) # Check that duality gap is 0 self.assertAlmostEqual( sdca.objective(sdca.solution), sdca.dual_objective(sdca.dual_solution)) # Check that original vector is approximatively retrieved if fit_intercept: original_coeffs = np.hstack((weight0, intercept)) else: original_coeffs = weight0 np.testing.assert_array_almost_equal(original_coeffs, sdca.solution, decimal=1) # Ensure that we solve the same problem as other solvers svrg = SVRG(max_iter=100, verbose=False, tol=1e-14, seed=Test.sto_seed) svrg.set_model(model).set_prox(ProxL2Sq(l_l2sq)) svrg.solve(0.5 * np.ones(model.n_coeffs), step=1e-2) np.testing.assert_array_almost_equal(svrg.solution, sdca.solution, decimal=4)
def run_solvers(model, l_l2sq): try: svrg_step = 1. / model.get_lip_max() except AttributeError: svrg_step = 1e-3 try: gd_step = 1. / model.get_lip_best() except AttributeError: gd_step = 1e-1 bfgs = BFGS(verbose=False, tol=1e-13) bfgs.set_model(model).set_prox(ProxL2Sq(l_l2sq)) bfgs.solve() bfgs.history.set_minimizer(bfgs.solution) bfgs.history.set_minimum(bfgs.objective(bfgs.solution)) bfgs.solve() svrg = SVRG(step=svrg_step, verbose=False, tol=1e-10, seed=seed) svrg.set_model(model).set_prox(ProxL2Sq(l_l2sq)) svrg.history.set_minimizer(bfgs.solution) svrg.history.set_minimum(bfgs.objective(bfgs.solution)) svrg.solve() sdca = SDCA(l_l2sq, verbose=False, seed=seed, tol=1e-10) sdca.set_model(model).set_prox(ProxZero()) sdca.history.set_minimizer(bfgs.solution) sdca.history.set_minimum(bfgs.objective(bfgs.solution)) sdca.solve() gd = GD(verbose=False, tol=1e-10, step=gd_step, linesearch=False) gd.set_model(model).set_prox(ProxL2Sq(l_l2sq)) gd.history.set_minimizer(bfgs.solution) gd.history.set_minimum(bfgs.objective(bfgs.solution)) gd.solve() agd = AGD(verbose=False, tol=1e-10, step=gd_step, linesearch=False) agd.set_model(model).set_prox(ProxL2Sq(l_l2sq)) agd.history.set_minimizer(bfgs.solution) agd.history.set_minimum(bfgs.objective(bfgs.solution)) agd.solve() return bfgs, svrg, sdca, gd, agd
def test_serializing_solvers(self): """...Test serialization of solvers """ ratio = 0.5 l_enet = 1e-2 sd = ratio * l_enet solvers = [ AdaGrad(step=1e-3, max_iter=100, verbose=False, tol=0), SGD(step=1e-3, max_iter=100, verbose=False, tol=0), SDCA(l_l2sq=sd, max_iter=100, verbose=False, tol=0), SAGA(step=1e-3, max_iter=100, verbose=False, tol=0), SVRG(step=1e-3, max_iter=100, verbose=False, tol=0) ] model_map = { ModelLinReg: SimuLinReg, ModelLogReg: SimuLogReg, ModelPoisReg: SimuPoisReg, ModelHinge: SimuLogReg, ModelQuadraticHinge: SimuLogReg, ModelSmoothedHinge: SimuLogReg, ModelAbsoluteRegression: SimuLinReg, ModelEpsilonInsensitive: SimuLinReg, ModelHuber: SimuLinReg, ModelLinRegWithIntercepts: SimuLinReg, ModelModifiedHuber: SimuLogReg } for solver in solvers: for mod in model_map: np.random.seed(12) n_samples, n_features = 100, 5 w0 = np.random.randn(n_features) intercept0 = 50 * weights_sparse_gauss(n_weights=n_samples, nnz=30) c0 = None X, y = SimuLinReg(w0, c0, n_samples=n_samples, verbose=False, seed=2038).simulate() if mod == ModelLinRegWithIntercepts: y += intercept0 model = mod(fit_intercept=False).fit(X, y) prox = ProxL1(2.) solver.set_model(model) solver.set_prox(prox) pickled = pickle.loads(pickle.dumps(solver)) self.assertTrue(solver._solver.compare(pickled._solver)) self.assertTrue( solver.model._model.compare(pickled.model._model)) self.assertTrue(solver.prox._prox.compare(pickled.prox._prox)) if mod == ModelLinRegWithIntercepts: test_vector = np.hstack((X[0], np.ones(n_samples))) self.assertEqual(model.loss(test_vector), solver.model.loss(test_vector)) else: self.assertEqual(model.loss(X[0]), solver.model.loss(X[0]))
def create_solver(): return SDCA(max_iter=1, verbose=False, l_l2sq=1e-3, seed=TestSolver.sto_seed)
def create_solver(): return SDCA(l_l2sq=0.1, max_iter=100, verbose=False, seed=TestSolver.sto_seed)