def test_sdca_identity_poisreg(self): """...Test SDCA on specific case of Poisson regression with indentity link """ l_l2sq = 1e-3 n_samples = 10000 n_features = 3 np.random.seed(123) weight0 = np.random.rand(n_features) features = np.random.rand(n_samples, n_features) for intercept in [None, 0.45]: if intercept is None: fit_intercept = False else: fit_intercept = True simu = SimuPoisReg(weight0, intercept=intercept, features=features, n_samples=n_samples, link='identity', verbose=False) features, labels = simu.simulate() model = ModelPoisReg(fit_intercept=fit_intercept, link='identity') model.fit(features, labels) sdca = SDCA(l_l2sq=l_l2sq, max_iter=100, verbose=False, tol=1e-14, seed=Test.sto_seed) sdca.set_model(model).set_prox(ProxZero()) start_dual = np.sqrt(sdca._rand_max * l_l2sq) start_dual = start_dual * np.ones(sdca._rand_max) sdca.solve(start_dual) # Check that duality gap is 0 self.assertAlmostEqual( sdca.objective(sdca.solution), sdca.dual_objective(sdca.dual_solution)) # Check that original vector is approximatively retrieved if fit_intercept: original_coeffs = np.hstack((weight0, intercept)) else: original_coeffs = weight0 np.testing.assert_array_almost_equal(original_coeffs, sdca.solution, decimal=1) # Ensure that we solve the same problem as other solvers svrg = SVRG(max_iter=100, verbose=False, tol=1e-14, seed=Test.sto_seed) svrg.set_model(model).set_prox(ProxL2Sq(l_l2sq)) svrg.solve(0.5 * np.ones(model.n_coeffs), step=1e-2) np.testing.assert_array_almost_equal(svrg.solution, sdca.solution, decimal=4)
def test_dense_and_sparse_match(self): """...Test in SVRG that dense and sparse code matches in all possible settings """ variance_reductions = ['last', 'rand'] rand_types = ['perm', 'unif'] seed = 123 tol = 0. max_iter = 50 n_samples = 500 n_features = 20 # Crazy prox examples proxs = [ ProxTV(strength=1e-2, range=(5, 13), positive=True).astype(self.dtype), ProxElasticNet(strength=1e-2, ratio=0.9).astype(self.dtype), ProxEquality(range=(0, n_features)).astype(self.dtype), ProxL1(strength=1e-3, range=(5, 17)).astype(self.dtype), ProxL1w(strength=1e-3, weights=np.arange(5, 17, dtype=np.double), range=(5, 17)).astype(self.dtype), ] for intercept in [-1, None]: X, y = self.simu_linreg_data(dtype=self.dtype, interc=intercept, n_features=n_features, n_samples=n_samples) fit_intercept = intercept is not None model_dense, model_spars = self.get_dense_and_sparse_linreg_model( X, y, dtype=self.dtype, fit_intercept=fit_intercept) step = 1 / model_spars.get_lip_max() for variance_reduction, rand_type, prox in product( variance_reductions, rand_types, proxs): solver_sparse = SVRG(step=step, tol=tol, max_iter=max_iter, verbose=False, variance_reduction=variance_reduction, rand_type=rand_type, seed=seed) solver_sparse.set_model(model_spars).set_prox(prox) solver_dense = SVRG(step=step, tol=tol, max_iter=max_iter, verbose=False, variance_reduction=variance_reduction, rand_type=rand_type, seed=seed) solver_dense.set_model(model_dense).set_prox(prox) solver_sparse.solve() solver_dense.solve() places = 7 if self.dtype is "float32": places = 3 np.testing.assert_array_almost_equal(solver_sparse.solution, solver_dense.solution, decimal=places)
def compare_solver_sdca(self): """...Compare SDCA solution with SVRG solution """ np.random.seed(12) n_samples = Test.n_samples n_features = Test.n_features for fit_intercept in [True, False]: y, X, coeffs0, interc0 = TestSolver.generate_logistic_data( n_features, n_samples) model = ModelLogReg(fit_intercept=fit_intercept).fit(X, y) ratio = 0.5 l_enet = 1e-2 # SDCA "elastic-net" formulation is different from elastic-net # implementation l_l2_sdca = ratio * l_enet l_l1_sdca = (1 - ratio) * l_enet sdca = SDCA(l_l2sq=l_l2_sdca, max_iter=100, verbose=False, tol=0, seed=Test.sto_seed).set_model(model) prox_l1 = ProxL1(l_l1_sdca) sdca.set_prox(prox_l1) coeffs_sdca = sdca.solve() # Compare with SVRG svrg = SVRG(max_iter=100, verbose=False, tol=0, seed=Test.sto_seed).set_model(model) prox_enet = ProxElasticNet(l_enet, ratio) svrg.set_prox(prox_enet) coeffs_svrg = svrg.solve(step=0.1) np.testing.assert_allclose(coeffs_sdca, coeffs_svrg)
def run_solvers(model, l_l2sq): try: svrg_step = 1. / model.get_lip_max() except AttributeError: svrg_step = 1e-3 try: gd_step = 1. / model.get_lip_best() except AttributeError: gd_step = 1e-1 bfgs = BFGS(verbose=False, tol=1e-13) bfgs.set_model(model).set_prox(ProxL2Sq(l_l2sq)) bfgs.solve() bfgs.history.set_minimizer(bfgs.solution) bfgs.history.set_minimum(bfgs.objective(bfgs.solution)) bfgs.solve() svrg = SVRG(step=svrg_step, verbose=False, tol=1e-10, seed=seed) svrg.set_model(model).set_prox(ProxL2Sq(l_l2sq)) svrg.history.set_minimizer(bfgs.solution) svrg.history.set_minimum(bfgs.objective(bfgs.solution)) svrg.solve() sdca = SDCA(l_l2sq, verbose=False, seed=seed, tol=1e-10) sdca.set_model(model).set_prox(ProxZero()) sdca.history.set_minimizer(bfgs.solution) sdca.history.set_minimum(bfgs.objective(bfgs.solution)) sdca.solve() gd = GD(verbose=False, tol=1e-10, step=gd_step, linesearch=False) gd.set_model(model).set_prox(ProxL2Sq(l_l2sq)) gd.history.set_minimizer(bfgs.solution) gd.history.set_minimum(bfgs.objective(bfgs.solution)) gd.solve() agd = AGD(verbose=False, tol=1e-10, step=gd_step, linesearch=False) agd.set_model(model).set_prox(ProxL2Sq(l_l2sq)) agd.history.set_minimizer(bfgs.solution) agd.history.set_minimum(bfgs.objective(bfgs.solution)) agd.solve() return bfgs, svrg, sdca, gd, agd
def test_convergence_with_lags(self): """Test longitudinal multinomial model convergence.""" n_intervals = 10 n_lags = 3 n_samples = 1500 n_features = 3 sim = SimuSCCS(n_samples, n_intervals, n_features, n_lags, None, True, "short", seed=42, verbose=False) X, y, censoring, coeffs = sim.simulate() X = LongitudinalFeaturesLagger(n_lags=n_lags) \ .fit_transform(X, censoring) model = ModelSCCS(n_intervals=n_intervals, n_lags=n_lags).fit(X, y, censoring) solver = SVRG(max_iter=15, verbose=False) solver.set_model(model).set_prox(ProxZero()) coeffs_svrg = solver.solve(step=1 / model.get_lip_max()) np.testing.assert_almost_equal(coeffs, coeffs_svrg, decimal=1)
def test_convergence_with_lags(self): """Test longitudinal multinomial model convergence.""" n_intervals = 10 n_samples = 800 n_features = 2 n_lags = np.repeat(2, n_features).astype(dtype="uint64") sim = SimuSCCS(n_samples, n_intervals, n_features, n_lags, None, "multiple_exposures", seed=42) _, X, y, censoring, coeffs = sim.simulate() coeffs = np.hstack(coeffs) X, _, _ = LongitudinalFeaturesLagger(n_lags=n_lags) \ .fit_transform(X, censoring) model = ModelSCCS(n_intervals=n_intervals, n_lags=n_lags).fit(X, y, censoring) solver = SVRG(max_iter=15, verbose=False) solver.set_model(model).set_prox(ProxZero()) coeffs_svrg = solver.solve(step=1 / model.get_lip_max()) np.testing.assert_almost_equal(coeffs, coeffs_svrg, decimal=1)
n_samples=n_samples, seed=123, verbose=False).simulate() model = ModelLogReg(fit_intercept=True).fit(X, y) prox = ProxElasticNet(strength=1e-3, ratio=0.5, range=(0, n_features)) x0 = np.zeros(model.n_coeffs) optimal_step = 1 / model.get_lip_max() tested_steps = [optimal_step, 1e-2 * optimal_step, 10 * optimal_step] solvers = [] solver_labels = [] for step in tested_steps: svrg = SVRG(max_iter=30, tol=1e-10, verbose=False) svrg.set_model(model).set_prox(prox) svrg.solve(step=step) svrg_bb = SVRG(max_iter=30, tol=1e-10, verbose=False, step_type='bb') svrg_bb.set_model(model).set_prox(prox) svrg_bb.solve(step=step) solvers += [svrg, svrg_bb] optimal_factor = step / optimal_step if optimal_factor != 1: solver_labels += ['SVRG {:.2g} * optimal step'.format(optimal_factor), 'SVRG BB {:.2g} * optimal step'.format(optimal_factor)] else: solver_labels += ['SVRG optimal step'.format(optimal_factor), 'SVRG BB optimal step'.format(optimal_factor)]
model = ModelLogReg(fit_intercept=True) model.fit(features, labels) prox = ProxElasticNet(penalty_strength, ratio=0.5, range=(0, n_features)) svrg_step = 1. / model.get_lip_max() test_n_threads = [1, 2, 4] svrg_list = [] svrg_labels = [] for n_threads in test_n_threads: svrg = SVRG(step=svrg_step, seed=seed, max_iter=30, verbose=False, n_threads=n_threads) svrg.set_model(model).set_prox(prox) svrg.solve() svrg_list += [svrg] if n_threads == 1: svrg_labels += ['SVRG'] else: svrg_labels += ['ASVRG {}'.format(n_threads)] plot_history(svrg_list, x="time", dist_min=True, log_scale=True, labels=svrg_labels, show=False) plt.ylim([3e-3, 0.3]) plt.ylabel('log distance to optimal objective', fontsize=14) plt.tight_layout() plt.show()
from tick.prox import ProxElasticNet, ProxL1 from tick.plot import plot_history n_samples, n_features, = 5000, 50 weights0 = weights_sparse_gauss(n_features, nnz=10) intercept0 = 0.2 X, y = SimuLogReg(weights=weights0, intercept=intercept0, n_samples=n_samples, seed=123, verbose=False).simulate() model = ModelLogReg(fit_intercept=True).fit(X, y) prox = ProxElasticNet(strength=1e-3, ratio=0.5, range=(0, n_features)) solver_params = {'max_iter': 100, 'tol': 0., 'verbose': False} x0 = np.zeros(model.n_coeffs) gd = GD(linesearch=False, **solver_params).set_model(model).set_prox(prox) gd.solve(x0, step=1 / model.get_lip_best()) agd = AGD(linesearch=False, **solver_params).set_model(model).set_prox(prox) agd.solve(x0, step=1 / model.get_lip_best()) sgd = SGD(**solver_params).set_model(model).set_prox(prox) sgd.solve(x0, step=500.) svrg = SVRG(**solver_params).set_model(model).set_prox(prox) svrg.solve(x0, step=1 / model.get_lip_max()) plot_history([gd, agd, sgd, svrg], log_scale=True, dist_min=True)