Esempio n. 1
0
def test_normalize_max(random_df):
    data = random_df
    normalized = utils.normalize(data, "max")
    # check max index
    didx = data.idxmax(axis=1)
    nidx = normalized.idxmax(axis=1)
    assert (didx == nidx).all()
    # check max equals to 1
    assert np.isclose(normalized.max(axis=1).values, 1).all()
Esempio n. 2
0
def test_normalize_sum(random_df):
    data = random_df
    normalized = utils.normalize(data, "sum")

    # check max index
    didx = data.idxmax(axis=1)
    nidx = normalized.idxmax(axis=1)
    assert (didx == nidx).all()
    # check that each row sums 1
    assert np.isclose(normalized.sum(axis=1).values, 1).all()
Esempio n. 3
0
def test_normalize_invalid_mode(random_df):
    data = random_df
    with pytest.raises(ValueError):
        utils.normalize(data, "invalid_mode")
Esempio n. 4
0
def test_normalize_feature(random_df):
    data = random_df
    ft = data.columns[25]
    normalized = utils.normalize(data, "feature", ft)
    assert np.isclose(normalized[ft], 1).all()
Esempio n. 5
0
def test_normalize_euclidean(random_df):
    data = random_df
    normalized = utils.normalize(data, "euclidean")
    norm = normalized.apply(lambda x: np.linalg.norm(x), axis=1)
    assert np.isclose(norm, 1).all()
Esempio n. 6
0
def test_normalize_max(random_df):
    data = random_df
    normalized = utils.normalize(data, "max")
    assert np.isclose(normalized.max(axis=1).values, 1).all()
Esempio n. 7
0
def test_normalize_sum(random_df):
    data = random_df
    normalized = utils.normalize(data, "sum")
    assert np.isclose(normalized.sum(axis=1).values, 1).all()