Esempio n. 1
0
def test_fast_indexing():
    D = np.random.randn(1000, 1000)
    rows = np.random.randint(0, 1000, (400))
    cols = np.random.randint(0, 1000, (400))

    a = tikutils.fast_indexing(D, rows, cols)
    b = D[rows, :][:, cols]
    assert np.allclose(a, b)
    a = tikutils.fast_indexing(D, rows)
    b = D[rows, :]
    assert np.allclose(a, b)
    a = tikutils.fast_indexing(D.T, cols).T
    b = D[:, cols]
    assert np.allclose(a, b)
Esempio n. 2
0
def test_smoothness_prior():
    delays = range(10)
    ndelays = len(delays)

    for order in [1, 2, 4]:
        C = tikutils.difference_operator(order, ndelays)
        raw_penalty = np.dot(C, C.T)

        # create object
        prior = tp.SmoothnessPrior(delays=delays, order=order)
        assert np.allclose(prior.asarray.shape, (ndelays, ndelays))
        assert np.allclose(prior.penalty, raw_penalty)

        # create prior
        prior.get_prior(dodetnorm=False)
        raw_prior = np.linalg.inv(raw_penalty)
        assert np.allclose(raw_prior, prior.asarray)

        # update regularizer
        oprior = prior.get_prior(hhparam=2.0, dodetnorm=False)
        raw_prior = np.linalg.inv(raw_penalty + 2.0 * np.eye(ndelays))
        assert np.allclose(raw_prior, oprior)

    # check delay sub-selection
    delays = np.asarray([1, 3, 6, 8])
    ndelays = len(delays)
    fulldelays = range(max(delays) + 1)

    C = tikutils.difference_operator(order, len(fulldelays))
    raw_penalty = np.dot(C, C.T)

    # create object
    prior = tp.SmoothnessPrior(delays=delays, order=order)
    assert np.allclose(prior.get_prior().shape, (ndelays, ndelays))
    assert np.allclose(prior.penalty.shape, len(fulldelays), len(fulldelays))
    assert np.allclose(prior.penalty, raw_penalty)

    # create prior
    prior.get_prior(dodetnorm=False)
    raw_prior = np.linalg.inv(raw_penalty)
    raw_prior = tikutils.fast_indexing(raw_prior, delays, delays)
    assert np.allclose(raw_prior, prior.asarray)

    # update regularizer
    oprior = prior.get_prior(hhparam=2.0, dodetnorm=False)
    raw_prior = np.linalg.inv(raw_penalty + 2.0 * np.eye(len(fulldelays)))
    raw_prior = tikutils.fast_indexing(raw_prior, delays, delays)
    assert np.allclose(raw_prior, oprior)
Esempio n. 3
0
def get_delays_from_prior(raw_prior, delays):
    '''
    Parameters
    ----------
    raw_prior : 2D np.ndarray (k, k)
        The raw array defined continuously from
        the first delay to the last: `[min(delays),..., max(delays)]`,
        and `max(delays) - min(delays) = k`.
    delays : None or list_like (d)
        When delays is None, the delays of the `raw_prior`
        are assumed to be `[0, 1, ..., k-1]`.
        Otherwise, the delays are specified and are relative to the `raw_prior`.

    Return
    -------
    prior : 2D np.ndarray (

    '''
    if delays is None:
        prior = raw_prior
        delays = np.arange(raw_prior.shape[0])
    else:
        assert min(delays) >= 0 and max(delays) < raw_prior.shape[0]
        delays = np.asarray(delays)
        prior = tikutils.fast_indexing(raw_prior, delays, delays)
    return prior, delays
Esempio n. 4
0
def get_delays_from_prior(raw_prior, delays):
    if delays is None:
        prior = raw_prior
        delays = np.arange(raw_prior.shape[0])
    else:
        assert min(delays) >= 0 and max(delays) < raw_prior.shape[0]
        delays = np.asarray(delays)
        prior = tikutils.fast_indexing(raw_prior, delays, delays)
    return prior, delays
Esempio n. 5
0
def test_cv_api(show_figures=False, ntest=50):
    # if show_figures=True, this function will create
    # images of the temporal priors, and the feature prior hyparams in 3D

    ridges = [0., 1e-03, 1., 10.0, 100.]
    nridges = len(ridges)
    ndelays = 10
    delays = range(ndelays)

    features_train, features_test, responses_train, responses_test = get_abc_data(
    )
    features_sizes = [fs.shape[1] for fs in features_train]

    spatial_priors = [
        sps.SphericalPrior(features_sizes[0]),
        sps.SphericalPrior(features_sizes[1], hyparams=np.logspace(-3, 3, 7)),
        sps.SphericalPrior(features_sizes[2], hyparams=np.logspace(-3, 3, 7)),
    ]

    # do not scale first. this removes duplicates
    spatial_priors[0].set_hyparams(1.0)

    # non-diagonal hyper-prior
    W = np.random.randn(ndelays, ndelays)
    W = np.dot(W.T, W)

    tpriors = [
        tps.SphericalPrior(delays),
        tps.SmoothnessPrior(delays, hhparams=np.logspace(-3, 1, 8)),
        tps.SmoothnessPrior(delays, wishart=True),
        tps.SmoothnessPrior(delays, wishart=False),
        tps.SmoothnessPrior(delays, wishart=W, hhparams=np.logspace(-3, 3, 5)),
        tps.GaussianKernelPrior(delays,
                                hhparams=np.linspace(1, ndelays / 2, ndelays)),
        tps.HRFPrior([1] if delays == [0] else delays),
    ]

    nfolds = (1, 5)  # 1 times 5-fold cross-validation
    folds = tikutils.generate_trnval_folds(responses_train.shape[0],
                                           sampler='bcv',
                                           nfolds=nfolds)
    nfolds = np.prod(nfolds)

    for ntp, temporal_prior in enumerate(tpriors):
        print(temporal_prior)

        all_temporal_hypers = [temporal_prior.get_hhparams()]
        all_spatial_hypers = [t.get_hyparams() for t in spatial_priors]

        # get all combinations of hyparams
        all_hyperparams = list(
            itertools.product(*(all_temporal_hypers + all_spatial_hypers)))
        nspatial_hyperparams = np.prod([len(t) for t in all_spatial_hypers])
        ntemporal_hyperparams = np.prod([len(t) for t in all_temporal_hypers])

        population_mean = False
        results = np.zeros(
            (nfolds, ntemporal_hyperparams, nspatial_hyperparams, nridges,
             1 if population_mean else responses_train.shape[-1]),
            dtype=[
                ('fold', np.float32),
                ('tp', np.float32),
                ('sp', np.float32),
                ('ridges', np.float32),
                ('responses', np.float32),
            ])

        for hyperidx, spatiotemporal_hyperparams in enumerate(all_hyperparams):
            temporal_hyperparam = spatiotemporal_hyperparams[0]
            spatial_hyperparams = spatiotemporal_hyperparams[1:]
            spatial_hyperparams /= np.linalg.norm(spatial_hyperparams)

            # get indices
            shyperidx = np.mod(hyperidx, nspatial_hyperparams)
            thyperidx = int(hyperidx // nspatial_hyperparams)
            print(thyperidx,
                  temporal_hyperparam), (shyperidx, spatial_hyperparams)

            this_temporal_prior = temporal_prior.get_prior(
                alpha=1.0, hhparam=temporal_hyperparam)

            if show_figures:
                from matplotlib import pyplot as plt

                if (hyperidx == 0) and (ntp == 0):
                    # show points in 3D
                    from tikreg import priors
                    cartesian_points = [
                        t[1:] / np.linalg.norm(t[1:]) for t in all_hyperparams
                    ]
                    angles = priors.cartesian2polar(
                        np.asarray(cartesian_points))
                    priors.show_spherical_angles(angles[:, 0], angles[:, 1])

                if hyperidx == 0:
                    # show priors with different hyper-priors
                    oldthyper = 0
                    plt.matshow(this_temporal_prior, cmap='inferno')
                else:
                    if thyperidx > oldthyper:
                        oldthyper = thyperidx
                        plt.matshow(this_temporal_prior, cmap='inferno')

            # only run a few
            if hyperidx > ntest:
                continue

            Ktrain = 0.
            Kval = 0.

            for fdx, (fs_train, fs_test, fs_prior, fs_hyper) in enumerate(
                    zip(features_train, features_test, spatial_priors,
                        spatial_hyperparams)):

                kernel_train = models.kernel_spatiotemporal_prior(
                    fs_train,
                    this_temporal_prior,
                    fs_prior.get_prior(fs_hyper),
                    delays=delays)
                Ktrain += kernel_train

            kernel_normalizer = tikutils.determinant_normalizer(Ktrain)
            Ktrain /= float(kernel_normalizer)

            # cross-validation
            for ifold, (trnidx, validx) in enumerate(folds):
                ktrn = tikutils.fast_indexing(Ktrain, trnidx, trnidx)
                kval = tikutils.fast_indexing(Ktrain, validx, trnidx)

                fit = models.solve_l2_dual(ktrn,
                                           responses_train[trnidx],
                                           kval,
                                           responses_train[validx],
                                           ridges=ridges,
                                           verbose=False,
                                           performance=True)
                if population_mean:
                    cvfold = np.nan_to_num(fit['performance']).mean(-1)[...,
                                                                        None]
                else:
                    cvfold = fit['performance']
                results[ifold, thyperidx, shyperidx] = cvfold
Esempio n. 6
0
def test_hrf_prior():

    H = tikutils.hrf_default_basis(dt=2.0, duration=20.)
    raw_prior = np.dot(H, H.T).astype(np.float64)

    # test initialization
    prior = tp.HRFPrior()
    assert np.allclose(prior.asarray, raw_prior)

    # test delay seletion
    delays = np.arange(10)
    tt = tikutils.fast_indexing(raw_prior, delays, delays)
    prior = tp.HRFPrior()
    assert np.allclose(prior.asarray, tt)

    # change temporal resolution
    H = tikutils.hrf_default_basis(dt=1.0, duration=20.)
    raw_prior = np.dot(H, H.T).astype(np.float64)
    prior = tp.HRFPrior(dt=1.0)
    assert np.allclose(prior.asarray, raw_prior)

    # change total duration
    H = tikutils.hrf_default_basis(dt=2.0, duration=40.)
    raw_prior = np.dot(H, H.T).astype(np.float64)
    prior = tp.HRFPrior(duration=40)
    assert np.allclose(prior.asarray, raw_prior)

    # change resolution and duratoin
    H = tikutils.hrf_default_basis(dt=1.0, duration=40.)
    raw_prior = np.dot(H, H.T).astype(np.float64)
    prior = tp.HRFPrior(dt=1.0, duration=40)
    assert np.allclose(prior.asarray, raw_prior)

    # change resolution and duration and subselect delays
    H = tikutils.hrf_default_basis(dt=1.0, duration=40.)
    raw_prior = np.dot(H, H.T).astype(np.float64)
    delays = np.arange(1, 40)
    tt = tikutils.fast_indexing(raw_prior, delays, delays)
    prior = tp.HRFPrior(dt=1.0, duration=40, delays=delays)
    assert np.allclose(prior.asarray, tt)

    # change resolution and duration and subselect disjoint delays
    H = tikutils.hrf_default_basis(dt=1.0, duration=40.)
    raw_prior = np.dot(H, H.T).astype(np.float64)
    delays = np.asarray([1, 2, 10, 30, 35])
    tt = tikutils.fast_indexing(raw_prior, delays, delays)
    prior = tp.HRFPrior(dt=1.0, duration=40, delays=delays)
    assert np.allclose(prior.asarray, tt)

    # grab continuous delays
    H = tikutils.hrf_default_basis(dt=2.0, duration=20.)
    raw_prior = np.dot(H, H.T).astype(np.float64)

    delays = np.arange(1, 10)
    tt = tikutils.fast_indexing(raw_prior, delays, delays)
    prior = tp.HRFPrior(delays)
    assert np.allclose(prior.asarray, tt)
    assert np.allclose(prior.delays, delays)
    assert np.allclose(prior.ndelays, len(delays))

    # grab disjoint delays

    delays = np.asarray([1, 3, 6, 9])
    tt = tikutils.fast_indexing(raw_prior, delays, delays)
    prior = tp.HRFPrior(delays)
    assert np.allclose(prior.asarray, tt)
    assert np.allclose(prior.delays, delays)
    assert np.allclose(prior.ndelays, len(delays))
Esempio n. 7
0
def test_prior_from_penalty():
    tmp = np.random.randn(10, 10)
    raw_penalty = np.dot(tmp, tmp.T)
    prior = tp.PriorFromPenalty(raw_penalty, dodetnorm=False)

    assert np.allclose(raw_penalty, prior.penalty)

    penalty = prior.prior2penalty(dodetnorm=False)
    assert np.allclose(raw_penalty, penalty)

    penalty = prior.prior2penalty(dodetnorm=True)
    pdetnorm = tikutils.determinant_normalizer(raw_penalty)
    assert np.allclose(raw_penalty / pdetnorm, penalty)

    # this must break because the prior hasn't been updated
    try:
        penalty = prior.prior2penalty()
    except AssertionError:
        pass

    # generate the prior from penalty
    prior.get_prior(dodetnorm=False)
    raw_prior = np.linalg.inv(raw_penalty)
    assert np.allclose(raw_prior, prior.asarray)
    assert np.allclose(prior.penalty, raw_penalty)

    # generate a regularized prior from penalty
    penalty = prior.prior2penalty(dodetnorm=True)
    reg_penalty = np.linalg.inv(raw_prior)
    reg_pdetnorm = tikutils.determinant_normalizer(reg_penalty)
    assert np.allclose(prior.penalty, raw_penalty)
    assert np.allclose(reg_penalty / reg_pdetnorm, penalty)

    # subselect delays
    delays = np.asarray([1, 2, 3, 4])
    prior = tp.PriorFromPenalty(raw_penalty, delays=delays)
    assert np.allclose(prior.delays, delays)

    # generate prior
    prior.get_prior(dodetnorm=False)
    raw_prior = np.linalg.inv(raw_penalty)
    raw_prior = tikutils.fast_indexing(raw_prior, delays, delays)
    # prior should only contain delays of interest
    assert np.allclose(raw_prior, prior.asarray)
    # penalty should be kept as original
    assert np.allclose(prior.penalty, raw_penalty)

    # check default wishart covariance
    assert np.allclose(prior.wishart, np.eye(raw_penalty.shape[0]))

    # regularize penalty before inverting
    oprior = prior.get_prior(hhparam=2.0, dodetnorm=False)
    raw_prior = np.linalg.inv(raw_penalty + 2.0 * np.eye(raw_penalty.shape[0]))
    raw_prior = tikutils.fast_indexing(raw_prior, delays, delays)
    assert np.allclose(raw_prior, oprior)

    # regularize
    oprior = prior.get_prior(hhparam=2.0, dodetnorm=True)
    detnorm = tikutils.determinant_normalizer(raw_prior)
    assert np.allclose(raw_prior / detnorm, oprior)

    # set a non-diagonal wishart prior
    a = np.random.randn(10, 10)
    W = np.dot(a, a.T)
    prior.set_wishart(W)
    assert np.allclose(prior.wishart, W)
    # check the update works
    oprior = prior.get_prior(hhparam=2.0, dodetnorm=True)
    raw_prior = np.linalg.inv(raw_penalty + 2.0 * W)
    raw_prior = tikutils.fast_indexing(raw_prior, delays, delays)
    detnorm = tikutils.determinant_normalizer(raw_prior)
    assert np.allclose(raw_prior / detnorm, oprior)