Esempio n. 1
0
    def setUp(self):
        path = "/export/home/jhugger/sfb1129/pretrained_net_constantin/ISBI2012_UNet_pretrained/"
        model_file_name = path + "model.py"  #'/export/home/jhugger/sfb1129/ISBI2012_UNet_pretrained/model.py'
        module_spec = imputils.spec_from_file_location("model",
                                                       model_file_name)
        module = imputils.module_from_spec(module_spec)
        module_spec.loader.exec_module(module)
        model: torch.nn.Module = getattr(module,
                                         "UNet2dGN")(in_channels=1,
                                                     initial_features=64,
                                                     out_channels=1)
        state_path = path + "state.nn"  #'/export/home/jhugger/sfb1129/ISBI2012_UNet_pretrained/state.nn'

        try:
            state_dict = torch.load(state_path,
                                    map_location=lambda storage, loc: storage)
            model.load_state_dict(state_dict)
        except:
            raise FileNotFoundError(
                f"Model weights could not be found at location '{state_path}'!"
            )

        self.handler = ModelHandler(
            model=model,
            channels=1,
            device_names="cuda:0",
            dynamic_shape_code="(32 * (nH + 1), 32 * (nW + 1))")
Esempio n. 2
0
 def test_process_2D(self):
     model = nn.Sequential(
         nn.Conv2d(3, 512, 3), nn.Conv2d(512, 512, 3), nn.Conv2d(512, 512, 3), nn.Conv2d(512, 3, 3)
     )
     handler = ModelHandler(
         model=model, channels=3, device_names="cuda:0", dynamic_shape_code="(32 * (nH + 1), 32 * (nW + 1))"
     )
     shape = handler.binary_dry_run([3096, 2048])
     out = handler.forward(torch.zeros(*([1, 3] + shape), dtype=torch.float32))
Esempio n. 3
0
 def test_process_3D(self):
     model = nn.Sequential(nn.Conv3d(1, 12, 3), nn.Conv3d(12, 12, 3), nn.Conv3d(12, 12, 3), nn.Conv3d(12, 1, 3))
     handler = ModelHandler(
         model=model,
         channels=1,
         device_names="cuda:0",
         dynamic_shape_code="(32 * (nD + 1), 32 * (nH + 1), 32 * (nW + 1))",
     )
     shape = handler.binary_dry_run([128, 512, 512])
     out = handler.forward(torch.zeros(*([1, 1] + shape), dtype=torch.float32))
Esempio n. 4
0
 def test_dry_run_on_device(self):
     return 0
     logging.basicConfig(format="%(levelname)s: %(message)s", level=logging.DEBUG)
     model = nn.Sequential(
         nn.Conv2d(3, 512, 3), nn.Conv2d(512, 512, 3), nn.Conv2d(512, 512, 3), nn.Conv2d(512, 3, 3)
     )
     handler = ModelHandler(
         model=model, device_names="cuda:0", channels=3, dynamic_shape_code="(32 * (nH + 1), 32 * (nW + 1))"
     )
     spec = handler._dry_run_on_device(0)
     print(f"GPU Specs: {spec}")
Esempio n. 5
0
 def test_binary_dry_run_2d(self):
     model = nn.Sequential(
         nn.Conv2d(3, 2512, 3), nn.Conv2d(2512, 3512, 3), nn.Conv2d(3512, 512, 3), nn.Conv2d(512, 3, 3)
     )
     handler = ModelHandler(
         model=model, device_names="cuda:0", channels=3, dynamic_shape_code="(32 * (nH + 1), 32 * (nW + 1))"
     )
     image_shapes = [[512, 512], [760, 520], [1024, 1250], [3250, 4002]]
     for shape in image_shapes:
         device_capacity = handler.binary_dry_run(shape)
         print(f"Max shape that devices can process: {device_capacity}")
Esempio n. 6
0
 def test_binary_dry_run_3d(self):
     model = nn.Sequential(nn.Conv3d(3, 512, 3), nn.Conv3d(512, 512, 3),
                           nn.Conv3d(512, 512, 3), nn.Conv3d(512, 3, 3))
     handler = ModelHandler(
         model=model,
         device_names='cuda:0',
         channels=3,
         dynamic_shape_code='(10 * (nD + 1), 32 * (nH + 1), 32 * (nW + 1))')
     volumes = [[10, 512, 1024], [2000, 2000, 2000], [50, 256, 256]]
     for volume in volumes:
         device_capacity = handler.binary_dry_run(volume)
         print(f"Max shape that devices can process: {device_capacity}")
Esempio n. 7
0
 def test_dry_run(self):
     return 0
     logging.basicConfig(format='%(levelname)s: %(message)s',
                         level=logging.DEBUG)
     model = nn.Sequential(nn.Conv2d(3, 512, 3), nn.Conv2d(512, 512, 3),
                           nn.Conv2d(512, 512, 3), nn.Conv2d(512, 3, 3))
     handler = ModelHandler(
         model=model,
         device_names=['cpu'],  #['cuda:0', 'cuda:1'],
         in_channels=3,
         out_channels=3,
         dynamic_shape_code='(120 * (nH + 1), 120 * (nW + 1))')
     handler.dry_run()
     print(f"GPU0 Specs: {handler.get_device_spec(0)}")
     print(f"GPU1 Specs: {handler.get_device_spec(1)}")
Esempio n. 8
0
 def setUp(self):
     self.model = nn.Sequential(
         nn.Conv2d(3, 512, 3), nn.Conv2d(512, 512, 3), nn.Conv2d(512, 512, 3), nn.Conv2d(512, 3, 3)
     )
     self.handler = ModelHandler(
         model=self.model, channels=3, device_names="cpu", dynamic_shape_code="(32 * (nH + 1), 32 * (nW + 1))"
     )
Esempio n. 9
0
 def _set_handler(self, model):
     assert self.get('input_shape') is not None
     # Pass
     self._handler = ModelHandler(
         model=model,
         device_names=self._device,
         channels=self.get('input_shape')[0],
         dynamic_shape_code=self.get('dynamic_input_shape'))
Esempio n. 10
0
class TestDenseUNet(unittest.TestCase):
    def setUp(self):
        model_file_name = "/export/home/jhugger/sfb1129/CREMI_DUNet_pretrained/model.py"
        module_spec = imputils.spec_from_file_location("model",
                                                       model_file_name)
        module = imputils.module_from_spec(module_spec)
        module_spec.loader.exec_module(module)
        model: torch.nn.Module = getattr(module, "DUNet2D")(in_channels=1,
                                                            out_channels=1)
        state_path = "/export/home/jhugger/sfb1129/CREMI_DUNet_pretrained/state.nn"

        try:
            state_dict = torch.load(state_path,
                                    map_location=lambda storage, loc: storage)
            model.load_state_dict(state_dict)
        except:
            raise FileNotFoundError(
                f"Model weights could not be found at location '{state_path}'!"
            )

        self.handler = ModelHandler(
            model=model,
            channels=1,
            device_names="cuda:0",
            dynamic_shape_code="(32 * (nH + 1), 32 * (nW + 1))")

    def test_model(self):
        self.setUp()
        shape = self.handler.binary_dry_run([1250, 1250])
        transform = Compose(Normalize(), Cast("float32"))

        with h5py.File(
                "/export/home/jhugger/sfb1129/sample_C_20160501.hdf") as f:
            # with h5py.File('/home/jo/sfb1129/sample_C_20160501.hdf') as f:
            cremi_raw = f["volumes"]["raw"][0:1, 0:shape[0], 0:shape[1]]

        input_tensor = torch.from_numpy(transform(cremi_raw[0:1]))
        out = self.handler.forward(torch.unsqueeze(input_tensor, 0))
        import scipy

        scipy.misc.imsave("/export/home/jhugger/sfb1129/tiktorch/out.jpg",
                          out[0, 0].data.cpu().numpy())
Esempio n. 11
0
class TestUNet(unittest.TestCase):
    def setUp(self):
        path = "/export/home/jhugger/sfb1129/pretrained_net_constantin/ISBI2012_UNet_pretrained/"
        model_file_name = path + "model.py"  #'/export/home/jhugger/sfb1129/ISBI2012_UNet_pretrained/model.py'
        module_spec = imputils.spec_from_file_location("model",
                                                       model_file_name)
        module = imputils.module_from_spec(module_spec)
        module_spec.loader.exec_module(module)
        model: torch.nn.Module = getattr(module,
                                         "UNet2dGN")(in_channels=1,
                                                     initial_features=64,
                                                     out_channels=1)
        state_path = path + "state.nn"  #'/export/home/jhugger/sfb1129/ISBI2012_UNet_pretrained/state.nn'

        try:
            state_dict = torch.load(state_path,
                                    map_location=lambda storage, loc: storage)
            model.load_state_dict(state_dict)
        except:
            raise FileNotFoundError(
                f"Model weights could not be found at location '{state_path}'!"
            )

        self.handler = ModelHandler(
            model=model,
            channels=1,
            device_names="cuda:0",
            dynamic_shape_code="(32 * (nH + 1), 32 * (nW + 1))")

    def test_model(self):
        self.setUp()
        # shape = self.handler.binary_dry_run([2000, 2000])
        transform = Compose(Normalize(), Cast("float32"))

        # with h5py.File('/export/home/jhugger/sfb1129/sample_C_20160501.hdf') as f:
        with h5py.File(
                "/export/home/jhugger/sfb1129/sample_C_20160501.hdf") as f:
            cremi_raw = f["volumes"]["raw"][0:1, 0:1248, 0:1248]

        input_tensor = torch.from_numpy(transform(cremi_raw[0:1]))
        input_tensor = torch.rand(1, 572, 572)
        print(torch.unsqueeze(input_tensor, 0).shape)
        out = self.handler.forward(torch.unsqueeze(input_tensor, 0))
        import scipy

        scipy.misc.imsave("/export/home/jhugger/sfb1129/tiktorch/out.jpg",
                          out[0, 0].data.cpu().numpy())
        scipy.misc.imsave("/home/jo/server/tiktorch/out.jpg",
                          out[0, 0].data.cpu().numpy())
Esempio n. 12
0
    def setUp(self):
        model_file_name = '/export/home/jhugger/sfb1129/CREMI_DUNet_pretrained/model.py'
        module_spec = imputils.spec_from_file_location('model',
                                                       model_file_name)
        module = imputils.module_from_spec(module_spec)
        module_spec.loader.exec_module(module)
        model: torch.nn.Module = \
            getattr(module, 'DUNet2D')(in_channels=1, out_channels=1)
        state_path = '/export/home/jhugger/sfb1129/CREMI_DUNet_pretrained/state.nn'

        try:
            state_dict = torch.load(state_path,
                                    map_location=lambda storage, loc: storage)
            model.load_state_dict(state_dict)
        except:
            raise FileNotFoundError(
                f"Model weights could not be found at location '{state_path}'!"
            )

        self.handler = ModelHandler(
            model=model,
            channels=1,
            device_names='cuda:0',
            dynamic_shape_code='(32 * (nH + 1), 32 * (nW + 1))')