def setUp(self): TikTorch.read_config = lambda self: self tiktorch = TikTorch(build_directory=".") if self.MODEL == "HEAVY": tiktorch._model = nn.Sequential( nn.Conv2d(1, 512, 9, padding=4), nn.ELU(), nn.Conv2d(512, 512, 9, padding=4), nn.ELU(), nn.Conv2d(512, 512, 9, padding=4), nn.ELU(), nn.Conv2d(512, 512, 9, padding=4), nn.ELU(), nn.Conv2d(512, 1, 9, padding=4), ) elif self.MODEL == "LITE": tiktorch._model = nn.Conv2d(1, 1, 1) tiktorch._config = {"input_shape": [1, 512, 512], "dynamic_input_shape": "(32 * (nH + 1), 32 * (nW + 1))"} tiktorch._set_handler(tiktorch._model) self.tiktorch = tiktorch
def setUp(self): TikTorch.read_config = lambda self: self tiktorch = TikTorch(build_directory='.') if self.MODEL == 'HEAVY': tiktorch._model = nn.Sequential( nn.Conv2d(1, 512, 9, padding=4), nn.ELU(), nn.Conv2d(512, 512, 9, padding=4), nn.ELU(), nn.Conv2d(512, 512, 9, padding=4), nn.ELU(), nn.Conv2d(512, 512, 9, padding=4), nn.ELU(), nn.Conv2d(512, 1, 9, padding=4), ) elif self.MODEL == 'LITE': tiktorch._model = nn.Conv2d(1, 1, 1) tiktorch._config = { 'input_shape': [1, 512, 512], 'dynamic_input_shape': '(32 * (nH + 1), 32 * (nW + 1))' } tiktorch._set_handler(tiktorch._model) self.tiktorch = tiktorch