Esempio n. 1
0
def assemble_global_var(var):
    files = glob.glob(stats.var_dir["W"]+"/*pkl")
    tile_list = [l.split('_')[1][:-4] for l in files]
    print("found %i tiles" % len(tile_list))
    nlat = len(latglo)
    nlon = len(longlo)
    nz = len(tools.zref)

    z3d = np.zeros((nlat, nlon, nz))

    bb = tiles.read_tiles()

    pbs = []
    for tile in tile_list:
        print("\r %8s" % tile, end="")
        jj, ii = get_slices(tile)
        d = stats.read(tile, var, transpose=False)
        d[np.isnan(d)] = fill_value
        #print(len(jj),len(ii), np.shape(d) ,np.shape(z3d))
        try:
            z3d[jj, ii, :] = d
        except:
            z3d[jj, ii, :] = fill_value
            pbs += [tile]
    print("\npb with tiles ", pbs)
    #z3d = np.ma.array(z3d,mask=z3d==fill_value)
    return np.transpose(z3d, (2, 0, 1))
Esempio n. 2
0
def split_global_into_tiles():
    bb = tiles.read_tiles()
    subd_list = [a + b for a, b in itertools.product("01", "0123")]
    for subd in subd_list:
        print("update tiles profiles %s" % subd)
        tile_list = [t for t in bb.keys() if t[:2] == subd]
        argo = {}
        for tile in tile_list:
            argo[tile] = tiles.read_argo_tile(tile)
        purge = False
        for var in zref_var:
            f = global_profiles_file % (var, subd)
            if os.path.exists(f):
                prof = pd.read_pickle(f)
                for tile in tile_list:
                    print("\r %4s - " % var, end="")
                    idx = argo[tile].index
                    data = {var: prof.loc[idx]}
                    write_profiles(tile, data, variables=[var])
            else:
                print(" %4s - %s is empty" % (var, tile))
                # purge tiles/profiles folder
                for tile in tile_list:
                    f = tiles_profiles_file % (var_dir[var], tile)
                    command = "rm %s" % f
                    print(command)
                    #os.system(command)

        print()
    apply_timestamp()
Esempio n. 3
0
def monoproc_job():
    tasks, keys = define_tasks(resume=True)

    bb = tiles.read_tiles()

    for itask in tasks:
        tile = keys[itask]
        print('** processes tile %s' % tile)
        stats.compute_stats(bb, tile)
Esempio n. 4
0
def write_subd_from_tiles(subd):
    bb = tiles.read_tiles()

    assert subd in subd_list

    print("gather global atlas in %s" % subd)
    tile_list = [k for k in bb.keys() if k[:len(subd)] == subd]

    ncfile = tile_atlas_file % subd
    print("assemble %s" % ncfile)

    jj, ii = get_slices(subd)
    # offset
    i0 = ii.start
    j0 = jj.start
    lonf = longlo[ii]
    latf = latglo[jj]

    nz = len(stats.zref)

    create_empty_netcdf_file(ncfile, latf, lonf)

    for tile in tile_list:
        jj, ii = get_slices(tile)
        #jj = [j-j0 for j in jj]
        #ii = [i-i0 for i in ii]
        ii = slice(ii.start-i0, ii.stop-i0, None)
        jj = slice(jj.start-j0, jj.stop-j0, None)
        nj = jj.stop-jj.start
        ni = ii.stop-ii.start
        z3d = np.zeros((nz, nj, ni))
        #print(longlo[ii], latglo[jj])
        for var in stats.var_stats:
            print("\r %s - %s      " % (tile, var), end="")

            data = stats.read(tile, var)

            # # TODO: remove this dirty fix
            # data[data<-10]=np.nan
            # if var!="W":
            #     data[data>50]=np.nan

            #print( tile, np.shape(z3d), np.shape(data))
            z3d[:, :, :] = data

            with Dataset(ncfile, "r+") as nc:
                #print(np.shape(q), nj, ni)
                #print(jj[0],jj[-1], ii[0],ii[-1])
                #print(tile, z3d.shape, nj, ni, jj, ii)
                for kz in range(nz):
                    nc.variables[var][kz, jj, ii] = z3d[kz][:, :]

    print()
Esempio n. 5
0
def gather_global_from_tiles():
    bb = tiles.read_tiles()
    subd_list = [a + b for a, b in itertools.product("01", "0123")]
    for subd in subd_list:
        print("update global profiles %s", subd)
        tile_list = [k for k in bb.keys() if k[:2] == subd]
        data = {}
        for var in zref_var:
            data[var] = []
        for tile in tile_list:
            prof = read_profiles(tile)
            for var in zref_var:
                data[var] += [prof[var]]
        for var in zref_var:
            f = global_profiles_file % (var, subd)
            prof = pd.concat(data[var])
            prof.to_pickle(f)
Esempio n. 6
0
def master_job(nslaves, resume=False):
    # define the master director
    master = mns.Master(nslaves)

    argo = tools.read_argodb()
    bb = tiles.read_tiles()
    keys = list(bb.keys())

    work = workload(bb)
    if resume:
        missing = [
            k for k in keys if not (os.path.exists(interp.tiles_profiles_file %
                                                   (interp.var_dir["CT"], k)))
        ]
        weight = [work[k] for k in missing]
        idx = np.argsort(weight)
        tasks = idx[::-1]
        keys = missing

    else:
        weight = [work[k] for k in keys]
        idx = np.argsort(weight)
        tasks = idx[::-1]
        #tiles.split_global_into_tiles(bb, argo)

    print(tasks)
    pd.to_pickle(keys, file_tiles_to_interpolate)

    # master defines the tasks
    master.barrier(0)

    # slaves work
    master.async_distrib(tasks)

    master.barrier(1)

    # gather DataFrame
    tiles.gather_global_from_tiles()
    # gather profiles
    interp.gather_global_from_tiles()

    # master gathers the dataframes
    master.barrier(2)
Esempio n. 7
0
def define_tasks(resume=False):
    argo = tools.read_argodb()
    bb = tiles.read_tiles()
    keys = list(bb.keys())
    work = workload(bb)
    if resume:
        d = stats.var_dir["CT"]
        keys = [
            k for k in keys if not (os.path.exists(stats.tiles_file % (d, k)))
        ]

    weight = [work[k] for k in keys]
    idx = np.argsort(weight)

    tasks = list(idx[::-1])
    tile_list = [keys[t] for t in tasks]
    #print(tasks)
    #print(tile_list)
    return (tasks, keys)
Esempio n. 8
0
def master_job(nslaves, resume=False):
    # define the master director
    master = mns.Master(nslaves, verbose=False)

    stats.create_folders()

    obj = define_tasks(resume=resume)
    tasks, keys = mns.bcast(obj)

    bb = tiles.read_tiles()
    bb = mns.bcast(bb)

    # master defines the tasks
    #print("MASTER has tasks: ", tasks)
    master.barrier(0)

    # slaves work
    master.async_distrib(tasks)

    master.barrier(1)

    # master gathers the dataframes
    master.barrier(2)
Esempio n. 9
0
                                      data=True,
                                      dataqc=True,
                                      verbose=False)

            for tag in todo_tags:
                iprof = aa.loc[tag, "IPROF"]
                #print(" - iprof %i" % iprof)
                d = get_iprof(data, iprof)

                zref_d, ok = it.raw_to_zref(d, zref)
                if ok:
                    # update the status in the database
                    a.loc[tag, "STATUS"] = "D"
                    for var in zref_var:
                        zref_data[var].loc[tag, :] = zref_d[var][:]
                else:
                    a.STATUS[tag] = "F"

    tiles.write_argo_tile(tile, a)
    write_profiles(tile, zref_data)


if __name__ == '__main__':

    bb = tiles.read_tiles()

    for tile in list(bb.keys())[:12]:

        print('-' * 40)
        update_profiles_in_tile(tile)