def sequence_registration_affine(list_images):
    #--- check SpatialImage sequence
    conds_init = isinstance(list_images, list) and len(list_images)>=3
    conds_list_img = [0 if isinstance(sp_img, SpatialImage) else 1
                        for sp_img in list_images]
    #--- end check
    if conds_init and 1 not in conds_list_img:
        #--- pairwise registration
        pairwise_trsf = []
        for ind, sp_img in enumerate(list_images):
            if ind < len(list_images)-1:
                # --- rigid registration
                trsf_rig, res_rig = blockmatching(list_images[ind], list_images[ind+1],
                                                  param_str_2='-trsf-type rigid -py-ll 1')
                # --- affine registration, initialisation by a rigid transformation
                trsf_aff, res_aff = blockmatching(list_images[ind], list_images[ind+1],
                                                  left_transformation=trsf_rig,
                                                  param_str_2='-trsf-type affine')
                res_trsf = compose_trsf([trsf_rig, trsf_aff]) #--- composition of transformations
                pairwise_trsf.append(res_trsf) #--- case affine registration
                trsf_rig.free() #--- add
        #--- composition of transformations
        list_compo_trsf, list_res_img = [], []
        for ind, trsf in enumerate(pairwise_trsf):
            if ind < len(pairwise_trsf)-1:
                tmp_trsf = compose_trsf(pairwise_trsf[ind:]) # matrix multiplication
                list_compo_trsf.append(tmp_trsf)
            elif ind == pairwise_trsf.index(pairwise_trsf[-1]):
                list_compo_trsf.append(pairwise_trsf[-1])
        #--- displacements compensation (whole sequence)
        for ind, trsf in enumerate(list_compo_trsf):
            tmp_img = apply_trsf(list_images[ind], trsf, template_img=list_images[-1])
            list_res_img.append(tmp_img)
        list_res_img.append(list_images[-1]) # add reference image
    return list_compo_trsf, list_res_img
Esempio n. 2
0
def deformable_registration(floating_img, reference_img):
    trsf_rig, res_rig = blockmatching(floating_img, reference_img)
    param_str_2 = '-trsf-type vectorfield'
    trsf_def, res_def = blockmatching(floating_img, reference_img,
                                      init_result_transformation=trsf_rig,
                                      param_str_2=param_str_2)
    return trsf_def, res_def
Esempio n. 3
0
def deformable_registration(floating_img, reference_img):
    trsf_rig, res_rig = blockmatching(floating_img, reference_img)
    param_str_2 = '-trsf-type vectorfield'
    trsf_def, res_def = blockmatching(floating_img,
                                      reference_img,
                                      init_result_transformation=trsf_rig,
                                      param_str_2=param_str_2)
    return trsf_def, res_def
def sequence_registration_rigid(list_images):
    #--- check SpatialImage sequence
    conds_init = isinstance(list_images, list) and len(list_images)>=3
    conds_list_img = [0 if isinstance(sp_img, SpatialImage) else 1
                        for sp_img in list_images]
    #--- end check
    if conds_init and 1 not in conds_list_img:
        #--- pairwise registration
        pairwise_trsf = []
        for ind, sp_img in enumerate(list_images):
            if ind < len(list_images)-1:
                # --- rigid registration
                trsf_rig, res_rig = blockmatching(list_images[ind], list_images[ind+1],
                                                  param_str_2='-trsf-type rigid')
                pairwise_trsf.append(trsf_rig) #--- case rigid registration
        #--- composition of transformations
        list_compo_trsf, list_res_img = [], []
        for ind, trsf in enumerate(pairwise_trsf):
            if ind < len(pairwise_trsf)-1:
                comp_trsf = compose_trsf(pairwise_trsf[ind:]) # matrix multiplication
                list_compo_trsf.append(comp_trsf)
            elif ind == len(pairwise_trsf)-1:
                list_compo_trsf.append(pairwise_trsf[-1])
        #--- displacements compensation (whole sequence)
        for ind, trsf in enumerate(list_compo_trsf):
            tmp_img = apply_trsf(list_images[ind], trsf, template_img=list_images[-1]) # global reference : list_images[-1]
            list_res_img.append(tmp_img)
        list_res_img.append(list_images[-1]) # add global reference image
    return list_compo_trsf, list_res_img
Esempio n. 5
0
def affine_registration(floating_img, reference_img):
    trsf_rig, res_rig = rigid_registration(floating_img, reference_img)
    param_str_2 = '-trsf-type affine'
    trsf_aff, res_aff = blockmatching(floating_img,
                                      reference_img,
                                      left_transformation=trsf_rig,
                                      param_str_2=param_str_2)
    return trsf_aff, res_aff
Esempio n. 6
0
def sequence_registration_affine(list_images):
    #--- check SpatialImage sequence
    conds_init = isinstance(list_images, list) and len(list_images) >= 3
    conds_list_img = [
        0 if isinstance(sp_img, SpatialImage) else 1 for sp_img in list_images
    ]
    #--- end check
    if conds_init and 1 not in conds_list_img:
        #--- pairwise registration
        pairwise_trsf = []
        for ind, sp_img in enumerate(list_images):
            if ind < len(list_images) - 1:
                # --- rigid registration
                trsf_rig, res_rig = blockmatching(
                    list_images[ind],
                    list_images[ind + 1],
                    param_str_2='-trsf-type rigid -py-ll 1')
                # --- affine registration, initialisation by a rigid transformation
                trsf_aff, res_aff = blockmatching(
                    list_images[ind],
                    list_images[ind + 1],
                    left_transformation=trsf_rig,
                    param_str_2='-trsf-type affine')
                res_trsf = compose_trsf(
                    [trsf_rig, trsf_aff])  #--- composition of transformations
                pairwise_trsf.append(res_trsf)  #--- case affine registration
                trsf_rig.free()  #--- add
        #--- composition of transformations
        list_compo_trsf, list_res_img = [], []
        for ind, trsf in enumerate(pairwise_trsf):
            if ind < len(pairwise_trsf) - 1:
                tmp_trsf = compose_trsf(
                    pairwise_trsf[ind:])  # matrix multiplication
                list_compo_trsf.append(tmp_trsf)
            elif ind == pairwise_trsf.index(pairwise_trsf[-1]):
                list_compo_trsf.append(pairwise_trsf[-1])
        #--- displacements compensation (whole sequence)
        for ind, trsf in enumerate(list_compo_trsf):
            tmp_img = apply_trsf(list_images[ind],
                                 trsf,
                                 template_img=list_images[-1])
            list_res_img.append(tmp_img)
        list_res_img.append(list_images[-1])  # add reference image
    return list_compo_trsf, list_res_img
 def test_blockmatching_basic(self):
     img_src = imread(data_path('filtering_src.inr'))
     trsf_out, res = blockmatching(img_src, img_src)
     identity_trsf = create_trsf(param_str_2='-identity')
     np.testing.assert_array_almost_equal(trsf_out.mat.to_np_array(),
                                          identity_trsf.mat.to_np_array(),
                                          decimal=8)
     np.testing.assert_array_almost_equal(res, img_src, decimal=8)
     identity_trsf.free()
     trsf_out.free()
     return
Esempio n. 8
0
 def test_blockmatching_basic(self):
     img_src = imread(data_path('filtering_src.inr'))
     trsf_out, res = blockmatching(img_src, img_src)
     identity_trsf = create_trsf(param_str_2='-identity')
     np.testing.assert_array_almost_equal(trsf_out.mat.to_np_array(),
                                          identity_trsf.mat.to_np_array(),
                                          decimal=8)
     np.testing.assert_array_almost_equal(res, img_src, decimal=8)
     identity_trsf.free()
     trsf_out.free()
     return
        def test_blockmatching_rigid(self):
            #--- rigid registration
            floating_img = imread(data_path('time_0_cut.inr'))
            reference_img = imread(data_path('time_1_cut.inr'))
            rigid_trsf = data_path("rigid_0_1.trsf")

            trsf_out, res = blockmatching(floating_img, reference_img)
            trsf_inp = BalTransformation()
            trsf_inp.read(rigid_trsf)
            np.testing.assert_array_almost_equal(trsf_out.mat.to_np_array(), trsf_inp.mat.to_np_array(), decimal=6)
            trsf_out.free()
            trsf_inp.free()
            return
Esempio n. 10
0
        def test_blockmatching_rigid(self):
            #--- rigid registration
            floating_img = imread(data_path('time_0_cut.inr'))
            reference_img = imread(data_path('time_1_cut.inr'))
            rigid_trsf = data_path("rigid_0_1.trsf")

            trsf_out, res = blockmatching(floating_img, reference_img)
            trsf_inp = BalTransformation()
            trsf_inp.read(rigid_trsf)
            np.testing.assert_array_almost_equal(trsf_out.mat.to_np_array(),
                                                 trsf_inp.mat.to_np_array(),
                                                 decimal=6)
            trsf_out.free()
            trsf_inp.free()
            return
Esempio n. 11
0
 def test_blockmatching_deformable(self):
     #--- deformable registration
     floating_img = imread(data_path('time_0_cut.inr'))
     reference_img = imread(data_path('time_1_cut.inr'))
     rigid_trsf = data_path("rigid_0_1.trsf")
     deformable_trsf = data_path("deformable_0_1.trsf")
     init_result_transformation = BalTransformation()
     init_result_transformation.read(rigid_trsf)
     param_str_2 = '-trsf-type vectorfield'
     trsf_out, res = blockmatching(floating_img, reference_img,
                                   init_result_transformation=init_result_transformation,
                                   left_transformation=None,
                                   param_str_2=param_str_2)
     trsf_inp = BalTransformation()
     trsf_inp.read(deformable_trsf)
     np.testing.assert_array_almost_equal(trsf_out.mat.to_np_array(), trsf_inp.mat.to_np_array(), decimal=6)
     trsf_out.free()
     trsf_inp.free()
     return
Esempio n. 12
0
 def test_blockmatching_deformable(self):
     #--- deformable registration
     floating_img = imread(data_path('time_0_cut.inr'))
     reference_img = imread(data_path('time_1_cut.inr'))
     rigid_trsf = data_path("rigid_0_1.trsf")
     deformable_trsf = data_path("deformable_0_1.trsf")
     init_result_transformation = BalTransformation()
     init_result_transformation.read(rigid_trsf)
     param_str_2 = '-trsf-type vectorfield'
     trsf_out, res = blockmatching(
         floating_img,
         reference_img,
         init_result_transformation=init_result_transformation,
         left_transformation=None,
         param_str_2=param_str_2)
     trsf_inp = BalTransformation()
     trsf_inp.read(deformable_trsf)
     np.testing.assert_array_almost_equal(trsf_out.mat.to_np_array(),
                                          trsf_inp.mat.to_np_array(),
                                          decimal=6)
     trsf_out.free()
     trsf_inp.free()
     return
Esempio n. 13
0
def sequence_registration_rigid(list_images):
    #--- check SpatialImage sequence
    conds_init = isinstance(list_images, list) and len(list_images) >= 3
    conds_list_img = [
        0 if isinstance(sp_img, SpatialImage) else 1 for sp_img in list_images
    ]
    #--- end check
    if conds_init and 1 not in conds_list_img:
        #--- pairwise registration
        pairwise_trsf = []
        for ind, sp_img in enumerate(list_images):
            if ind < len(list_images) - 1:
                # --- rigid registration
                trsf_rig, res_rig = blockmatching(
                    list_images[ind],
                    list_images[ind + 1],
                    param_str_2='-trsf-type rigid')
                pairwise_trsf.append(trsf_rig)  #--- case rigid registration
        #--- composition of transformations
        list_compo_trsf, list_res_img = [], []
        for ind, trsf in enumerate(pairwise_trsf):
            if ind < len(pairwise_trsf) - 1:
                comp_trsf = compose_trsf(
                    pairwise_trsf[ind:])  # matrix multiplication
                list_compo_trsf.append(comp_trsf)
            elif ind == len(pairwise_trsf) - 1:
                list_compo_trsf.append(pairwise_trsf[-1])
        #--- displacements compensation (whole sequence)
        for ind, trsf in enumerate(list_compo_trsf):
            tmp_img = apply_trsf(list_images[ind],
                                 trsf,
                                 template_img=list_images[-1]
                                 )  # global reference : list_images[-1]
            list_res_img.append(tmp_img)
        list_res_img.append(list_images[-1])  # add global reference image
    return list_compo_trsf, list_res_img
Esempio n. 14
0
 # -- get DEFORMABLE registration result trsf filename and write trsf:
 res_trsf_fname = get_res_trsf_fname(img_fname, index2time[ind+1], index2time[ind], trsf_type)
 if exists(res_path + res_trsf_fname) and not force:
     print "Found saved {} registered image and transformation!".format(trsf_type)
     print "Loading BalTransformation:\n  {}".format(res_path + res_img_fname)
     res_trsf = bal_trsf.BalTransformation()
     res_trsf.read(res_path + res_trsf_fname)
     list_res_trsf.append(res_trsf)
 else:
     if not exists(res_path):
         print "Creating folder: {}".format(res_path)
         mkdir(res_path)
     # --- rigid registration
     print "\nPerforming rigid registration of t{} on t{}:".format(ind,
                                                                   ind + 1)
     trsf_rig, res_rig = blockmatching(sp_img, list_iso_img[ind + 1],
                                       param_str_2='-trsf-type rigid -py-ll 1')
     # --- deformable registration, initialisation by a rigid transformation
     print "\nPerforming deformable registration of t{} on t{}:".format(ind,
                                                                        ind + 1)
     trsf_vf, res_vf = blockmatching(sp_img, list_iso_img[ind + 1],
                                     left_transformation=trsf_rig,
                                     param_str_2='-trsf-type vectorfield')
     # --- composition of transformations
     print "\nPerforming composition of rigid et deformable registration..."
     res_trsf = compose_trsf([trsf_rig, trsf_vf], template_img=list_iso_img[ind+1])
     list_res_trsf.append(res_trsf)
     # -- save the DEFORMABLE consecutive transformation:
     print "\nSaving {} transformation file: {}".format(trsf_type, res_trsf_fname)
     res_trsf.write(res_path + res_trsf_fname)
 # - Intensity image:
 if not exists(res_path + res_img_fname) or force:
Esempio n. 15
0
def fusion(list_images, iterations=None):
    """
    Multiview reconstruction (registration)

    Parameters
    ----------
    :param list list_images: list of input ``SpatialImage``

    :param int iterations: number of iterations, optional. Default: 5

    Returns
    ----------
    :return: ``SpatialImage`` instance -- image and metadata

    Example
    -------
    >>> from timagetk.util import data_path
    >>> from timagetk.components import imread
    >>> from timagetk.algorithms import fusion
    >>> vues = [0, 1, 2]
    >>> list_images = [imread(data_path('fusion_img_' + str(vue) + '.inr'))
                       for vue in vues]
    >>> fus_img = fusion(list_images)
    """
    if iterations is None:
        iterations = 5
    else:
        iterations = int(abs(iterations))
    #--- check: list of SpatialImage images
    conds_init = isinstance(list_images, list) and len(list_images)>=2
    conds_list_img = [0 if isinstance(sp_img, SpatialImage)
                      else 1 for sp_img in list_images]
    #--- end check
    if conds_init and 1 not in conds_list_img:

        succ_ref_img = []
        vox_list = [sp_img.get_voxelsize() for sp_img in list_images]
        vox_list = [i for i in itertools.chain.from_iterable(vox_list)] # voxel list
        ext_list = [sp_img.get_extent() for sp_img in list_images]
        ext_list = [i for i in itertools.chain.from_iterable(ext_list)] # extent list

        if list_images[0].get_dim() == 3:
            min_vox, val = np.min(vox_list), int(np.max(ext_list)/np.min(vox_list))
            tmp_arr = np.zeros((val, val, val), dtype=list_images[0].dtype)
            template_img = SpatialImage(tmp_arr, voxelsize=[min_vox, min_vox, min_vox])

        init_ref = apply_trsf(list_images[0], bal_transformation=None, template_img=template_img)
        succ_ref_img.append(init_ref)

        init_trsf_list, init_img_list = [], []
        for ind, sp_img in enumerate(list_images):
            if ind>0:
                trsf_rig, res_rig = blockmatching(sp_img, init_ref,
                                                  param_str_2='-trsf-type rigid -py-ll 1')

                trsf_aff, res_aff = blockmatching(sp_img, init_ref,
                                                  left_transformation=trsf_rig,
                                                  param_str_2='-trsf-type affine')

                tmp_trsf = compose_trsf([trsf_rig, trsf_aff])
                trsf_def, res_def = blockmatching(sp_img, init_ref,
                                                  init_result_transformation=tmp_trsf,
                                                  param_str_2='-trsf-type vectorfield')

                out_trsf = BalTransformation(c_bal_trsf=trsf_def)
                init_trsf_list.append(out_trsf)
                init_img_list.append(res_def)
        init_img_list.append(init_ref)
        mean_ref = mean_images(init_img_list)
        mean_trsf = mean_trsfs(init_trsf_list)
        mean_trsf_inv = inv_trsf(mean_trsf)
        mean_ref_update = apply_trsf(mean_ref, mean_trsf_inv, template_img=template_img)
        succ_ref_img.append(mean_ref_update)
        for index in range(0, iterations):
            init_trsf_list, init_img_list = [], []
            for ind, sp_img in enumerate(list_images):
                trsf_rig, res_rig = blockmatching(sp_img, mean_ref_update,
                                                  param_str_2='-trsf-type rigid -py-ll 1')
                trsf_aff, res_aff = blockmatching(sp_img, mean_ref_update,
                                                  left_transformation=trsf_rig,
                                                  param_str_2='-trsf-type affine')
                tmp_trsf = compose_trsf([trsf_rig, trsf_aff])
                trsf_def, res_def = blockmatching(sp_img, mean_ref_update,
                                                  init_result_transformation=tmp_trsf,
                                                  param_str_2='-trsf-type vectorfield')
                out_trsf = BalTransformation(c_bal_trsf=trsf_def)
                init_trsf_list.append(out_trsf)
                init_img_list.append(res_def)
            init_img_list.append(mean_ref_update)
            mean_ref = mean_images(init_img_list)
            mean_trsf = mean_trsfs(init_trsf_list)
            mean_trsf_inv = inv_trsf(mean_trsf)
            mean_ref_update = apply_trsf(mean_ref, mean_trsf_inv, template_img=template_img)
            succ_ref_img.append(mean_ref_update)
        return succ_ref_img[-1]
    else:
        print('Incorrect specification')
        return
Esempio n. 16
0
def rigid_registration(floating_img, reference_img):
    trsf_rig, res_rig = blockmatching(floating_img, reference_img)
    return trsf_rig, res_rig
Esempio n. 17
0
def affine_registration(floating_img, reference_img):
    trsf_rig, res_rig = rigid_registration(floating_img, reference_img)
    param_str_2 = '-trsf-type affine'
    trsf_aff, res_aff = blockmatching(floating_img, reference_img, left_transformation=trsf_rig, param_str_2=param_str_2)
    return trsf_aff, res_aff
Esempio n. 18
0
def rigid_registration(floating_img, reference_img):
    trsf_rig, res_rig = blockmatching(floating_img, reference_img)
    return trsf_rig, res_rig
Esempio n. 19
0
def fusion(list_images, iterations=None):
    """
    Multiview reconstruction (registration)

    Parameters
    ----------
    :param list list_images: list of input ``SpatialImage``

    :param int iterations: number of iterations, optional. Default: 5

    Returns
    ----------
    :return: ``SpatialImage`` instance -- image and metadata

    Example
    -------
    >>> from timagetk.util import data_path
    >>> from timagetk.components import imread
    >>> from timagetk.algorithms import fusion
    >>> vues = [0, 1, 2]
    >>> list_images = [imread(data_path('fusion_img_' + str(vue) + '.inr'))
                       for vue in vues]
    >>> fus_img = fusion(list_images)
    """
    if iterations is None:
        iterations = 5
    else:
        iterations = int(abs(iterations))
    #--- check: list of SpatialImage images
    conds_init = isinstance(list_images, list) and len(list_images) >= 2
    conds_list_img = [
        0 if isinstance(sp_img, SpatialImage) else 1 for sp_img in list_images
    ]
    #--- end check
    if conds_init and 1 not in conds_list_img:

        succ_ref_img = []
        vox_list = [sp_img.get_voxelsize() for sp_img in list_images]
        vox_list = [i for i in itertools.chain.from_iterable(vox_list)
                    ]  # voxel list
        ext_list = [sp_img.get_extent() for sp_img in list_images]
        ext_list = [i for i in itertools.chain.from_iterable(ext_list)
                    ]  # extent list

        if list_images[0].get_dim() == 3:
            min_vox, val = np.min(vox_list), int(
                np.max(ext_list) / np.min(vox_list))
            tmp_arr = np.zeros((val, val, val), dtype=list_images[0].dtype)
            template_img = SpatialImage(tmp_arr,
                                        voxelsize=[min_vox, min_vox, min_vox])

        init_ref = apply_trsf(list_images[0],
                              bal_transformation=None,
                              template_img=template_img)
        succ_ref_img.append(init_ref)

        init_trsf_list, init_img_list = [], []
        for ind, sp_img in enumerate(list_images):
            if ind > 0:
                trsf_rig, res_rig = blockmatching(
                    sp_img, init_ref, param_str_2='-trsf-type rigid -py-ll 1')

                trsf_aff, res_aff = blockmatching(
                    sp_img,
                    init_ref,
                    left_transformation=trsf_rig,
                    param_str_2='-trsf-type affine')

                tmp_trsf = compose_trsf([trsf_rig, trsf_aff])
                trsf_def, res_def = blockmatching(
                    sp_img,
                    init_ref,
                    init_result_transformation=tmp_trsf,
                    param_str_2='-trsf-type vectorfield')

                out_trsf = BalTransformation(c_bal_trsf=trsf_def)
                init_trsf_list.append(out_trsf)
                init_img_list.append(res_def)
        init_img_list.append(init_ref)
        mean_ref = mean_images(init_img_list)
        mean_trsf = mean_trsfs(init_trsf_list)
        mean_trsf_inv = inv_trsf(mean_trsf)
        mean_ref_update = apply_trsf(mean_ref,
                                     mean_trsf_inv,
                                     template_img=template_img)
        succ_ref_img.append(mean_ref_update)
        for index in range(0, iterations):
            init_trsf_list, init_img_list = [], []
            for ind, sp_img in enumerate(list_images):
                trsf_rig, res_rig = blockmatching(
                    sp_img,
                    mean_ref_update,
                    param_str_2='-trsf-type rigid -py-ll 1')
                trsf_aff, res_aff = blockmatching(
                    sp_img,
                    mean_ref_update,
                    left_transformation=trsf_rig,
                    param_str_2='-trsf-type affine')
                tmp_trsf = compose_trsf([trsf_rig, trsf_aff])
                trsf_def, res_def = blockmatching(
                    sp_img,
                    mean_ref_update,
                    init_result_transformation=tmp_trsf,
                    param_str_2='-trsf-type vectorfield')
                out_trsf = BalTransformation(c_bal_trsf=trsf_def)
                init_trsf_list.append(out_trsf)
                init_img_list.append(res_def)
            init_img_list.append(mean_ref_update)
            mean_ref = mean_images(init_img_list)
            mean_trsf = mean_trsfs(init_trsf_list)
            mean_trsf_inv = inv_trsf(mean_trsf)
            mean_ref_update = apply_trsf(mean_ref,
                                         mean_trsf_inv,
                                         template_img=template_img)
            succ_ref_img.append(mean_ref_update)
        return succ_ref_img[-1]
    else:
        print('Incorrect specification')
        return