def dostuff(num): start = time.Time() x=0 for x in range(num): x = x+1 end = time.Time() print(totaltime = end - start) return x
def check_for_surge(self, bytes_received, packets_received): if bytes_received > SwitchStats.surge_threshold / SwitchStats.polling_interval: end_timestamp = time.Time() surge_data = { 'datapath': self.datapath, 'start_timestamp': end_timestamp - SwitchStats.polling_interval, 'end_timestamp': end_timestamp, 'packets_received': packets_received, 'bytes_received': bytes_received } if self.current_surge != None: self.current_surge.extend(surge_data) else: self.current_surge = TrafficSurge(surge_data) return self.current_surge else: if self.current_surge != None: self.current_surge.end() surge = copy.copy(self.current_surge) self.current_surge = None return surge else: return None
def json_detection(): """ Returns JSON with classes found in the images """ raw_images = [] images = request.files.getlist("images") for image in images: image_name = image.filename image_names.append(image_name) image.save(os.path.join(os.getcwd(), image_name)) img_raw = tf.image.decode_image( open(image_name, 'rb').read(), channels=3 ) raw_images.append(img_raw) num = 0 # list for final response for i in range(len(raw_images)): ''' list of responses for current image ''' response = [] responses = [] raw_img = raw_images[i] num += 1 img = tf.expand_dims(raw_img, 0) img = transform_images(img, size) time1 = time.Time() boxes, scores, classes, num = yolo(img) time2 = time.time() print("Time: {}".format(time2 - time1)) print("Detections:") for j in range(nums[0]): print("\t{}, {}, {}".format(class_names[int(classes[0][j])], np.array(scores[0][j]), np.array(boxes[0][j]))) resposes.append([ "class": class_names[int(classes[0][j])], "confidence": float("{o:.2f}".format(np.array(scores[0][j]*100))) ]) response.append([ "image": image_names[j], "detections": responses ])
def Scan(a, m, n): time = Time() count = 0 for i in range(m, m + 64 + 1): for j in range(n, n + 64 + 1): if a[i, j] >= 200: count += 1 if count >= 64 * 64 * 1 / 2: time.Time() if time.Check() and not x[-1] == True and not x[-2] == True: # return True x.append(True) else: x.append(False) else: x.append(False)
def handleRequest(req): env = pack.unpackRequest(req) if env is False: return False head = env.Head cur_time = head.Time appkey = head.AppKey[:8] # # 通过appkey可以在游戏表里面获取appsecret # appsecret = appkey secret = binascii.unhexlify(appsecret) if head.Platform != common.PT_ANDROID and head.Platform != common.PT_IOS: env.Head.Result = common.MP_ERR_PLATFORM return pack.packRequest(env, "") key = pack.GetKey(secret, cur_time, head.Platform) result = ymcoder.mpDecode(env.ReqBody, key) if result is False: env.Head.Result = common.MP_ERR_DECODE return pack.packRequest(env, "") body = zlib.decompress(result) if body is False: env.Head.Result = common.MP_ERR_UNPACK return pack.packRequest(env, "") env.HeadExt.readFrom(body) env.ReqBody = body[env.HeadExt.Len:] retenv = handleProcess(env) retenv.Head.Time = int(time.Time()) key = pack.GetKey(secret, retenv.Head.Time, head.Platform) return pack.packRequest(env, key)
if len(contours) != 0: #Draw in blue the found contours cv2.drawContours(output, contours, -1, 255, 3) #Find the largest contour c = max(contours, key=cv2.contourArea) #print str(cv2.contourArea(c)) #Contour must be this big to count as ball. If number too small when no ball present may detect anything if cv2.contourArea(c) > 525: #Draw contour with circle (x, y), radius = cv2.minEnclosingCircle(c) center = (int(x), int(y)) diameter = radius * 2 radius = int(radius) cv2.circle(output, center, radius, (0, 255, 0), 2) #Draw contour with a rectangle ''' x, y, w, h = cv2.boundingRect(c) #Draw contour in green cv2.rectangle(output, (x,y),(x+w, y+h), (0, 255, 0),2) ''' #Show the images endTime = time.Time() print "Time taken: " + str(endTime - startTime) cv2.imshow("Ball", np.hstack([pImg, output])) cv2.waitKey(0) # OpenCV for Linux has a bug and needs this line cv2.destroyAllWindows()
def set_expstart(table): from astropy import time mjd = time.Time(table['t_min'], format='mjd') table['expstart'] = mjd.iso
def train(train_loader, model, criterion, optimizer, epoch): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() if args.no_partialbn: model.module.partialBN(False) else: model.module.partialBN(True) # 切换到训练模式 # 注意:调用的model重写的train方法以达到冻结bn层参数的目的 model.train() end = time.Time() for i, (input, target) in enumerate(train_loader): # 计算数据的导入时间 # 当执行enumerate(train_loader)的时候,是先调用DataLoader类的__iter__方法,该方法里面再调用DataLoaderIter类的初始化操作__init__ # 而当执行for循环操作时,调用DataLoaderIter类的__next__方法,在该方法中通过self.collate_fn接口读取self.dataset数据时就会调用TSNDataSet类的__getitem__方法,从而完成数据的迭代读取 data_time.update(time.time() - end) # 读取到数据后就将数据从Tensor转换成Variable格式,然后执行模型的前向计算 # 如果想在CUDA上进行计算,需要将操作对象放在GPU内存中。 target = target.cuda(async=True) input_var = torch.autograd.Variable(input) target_var = torch.autograd.Variable(target) # 计算输出 # output:batch size*class维度 # 自动调用模型中自定义的forward函数 output = model(input_var) loss = criterion(output, target_var) # 计算准确度和视频的总损失 prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) losses.update(loss.data[0], input.size(0)) prec1.update(prec1.data[0], input.size(0)) prec5.update(prec5.data[0], input.size(0)) # 对所有的参数的梯度缓冲区进行归零 optimizer.zero_grad() # autograd.Variable 这是这个包中最核心的类。 # 它包装了一个Tensor,并且几乎支持所有的定义在其上的操作。一旦完成了你的运算,你可以调用 .backward()来自动计算出所有的梯度。 # 反向传播,自动计算梯度 loss.backward() if args.clip_gradient is not None: total_norm = clip_grad_norm(model.parameters(), args.clip_gradient) if total_norm > args.clip_gradient: print("clipping gradient: {} with coef {}".format( total_norm, args.clip_gradient / total_norm)) # 执行参数更新 optimizer.step() # 计算消耗的时间 batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print(('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses, top1=top1, top5=top5, lr=optimizer.param_groups[-1]['lr'])))
def __init__(self, surge_data): super(EventTrafficSurgeEnd, self).__init__() self.timestamp = time.Time() self.surge_data = surge_data
def Updater(self): self.nextTime = time.Time() - self.startTime self.SetTime(self.nextTime) self.timer = self.after(50, self.Updater)
def ping(self): lc = time.Time()