def localizer(q): ## 2016-11-07 # def main(): llst = [] try: discovery = watson_developer_cloud.DiscoveryV1( '2016-11-07', username='******', password='******') start_time = tim() # environments = discovery.get_environments() # environments = [x for x in environments['environments']] # environment_id = environments[0]['environment_id'] # print(environment_id) # collection = discovery.list_collections(environment_id) # collections = [x for x in collection['collections']] # collection_id = collections[0]['collection_id'] # print(collection_id) #### hard coding the ids to make it faster environment_id = '168946e2-4f0b-4398-8a56-b6799d99c2c3' # collection_id = '5d59fead-1f8f-46bd-8ee5-c6418bb961e5' ##iitd collection_id = 'a65e74f6-dd7a-4684-a2dc-7019722c90b8' ##mit q = query_aug(q) ll = query(discovery, environment_id, collection_id, q) filepath = "/home/brojo/Flask/flask/localizer/html/" timepath = "/home/brojo/Flask/flask/localizer/time/" print("getting time") for l in ll: lst = [] # print("---------------") # print(l[0]) # print(l[1]) print("---------------------------------") time, text2 = get_time(l[1], l[0], filepath, timepath) lst.append(l[1]) ##filename lst.append(time) lst.append(text2) ###added on 15th april--text llst.append(lst) end_time = tim() executeion_time = end_time - start_time print("Total time taken ") + str(executeion_time) + " seconds" print( "--------------------------------------------------------------------------------------------------------" ) return llst except: return llst
def localizer(q): ## 2016-11-07 # def main(): discovery = watson_developer_cloud.DiscoveryV1( '2016-11-07', username='******', password='******') start_time = tim() # environments = discovery.get_environments() # environments = [x for x in environments['environments']] # environment_id = environments[0]['environment_id'] # print(environment_id) # collection = discovery.list_collections(environment_id) # collections = [x for x in collection['collections']] # collection_id = collections[0]['collection_id'] # print(collection_id) #### hard coding the ids to make it faster environment_id = '168946e2-4f0b-4398-8a56-b6799d99c2c3' # collection_id = '8baa0d9c-57e8-479e-970c-8f95fca99ba5' ##old collection_id = '9df12949-305b-4b4f-90a1-bf6e5e43c3ff' ll = query(discovery, environment_id, collection_id, q) filepath = "/home/brojo/Flask/flask/localizer/html/" timepath = "/home/brojo/Flask/flask/localizer/time/" print("getting time") llst = [] for l in ll: lst = [] print("---------------") print(l[0]) print(l[1]) print("---------------------------------") time = get_time(l[1], l[0], filepath, timepath) lst.append(l[1]) ##filename lst.append(time) lst.append(l[2]) ###added on 15th april--text llst.append(lst) end_time = tim() executeion_time = end_time - start_time print("Total time taken ") + str(executeion_time) + " seconds" print( "--------------------------------------------------------------------------------------------------------" ) return llst
def alpBetSpectraBM(kt,alpha, beta, back, params, NBM, nsnaps, MTE): biAOut = np.array([]) k1 = np.array([]) k2 = np.array([]) k3 = np.array([]) times = np.array([]) Hin = np.array([]) Nend = back[0,-1] for jj in range(0,np.size(back[:,0])): Hin[jj]=MTE.H(back[jj,1:]) Nexit = interpolate.splev(kt/3., np.exp(back[:,0])*Hin,interpolate.splrep(back[:,1], back[:,0], s=1e-15),der=0) if (nsnaps ==1 or nsnaps == 0): snaps= np.array([Nend]) snaps = np.linspace(Nexit-2.0,Nend,nsnaps) for l in range(0,np.size(alphaA)): alpha = alphaA[l] for j in range(0,side+1): print "l " , l, " j " , j beta =j*step if alpha>-(1-beta) and alpha < 1-beta : k1 = k/2 - beta*k/2. k2 = k/4*(1+alpha+beta) k3 = k/4*(1-alpha+beta) #print k1, k2, k3 # find conditions that allows longest mode 4 e-folds inside horizon Nstart = Nexit - max(math.log(k/k1),math.log(k/k2),math.log(k/k3))-Nbefore backExitMinus = np.zeros(2*nF) for i in range (1,2*nF+1): backExitMinus[i-1] = interpolate.splev(Nstart,interpolate.splrep(back[:,0], back[:,i], s=1e-15),der=0) # run solver for this triangle t= np.concatenate((np.array([Nstart]),snaps)) timebefore = time.tim() threePt = MTeasyPy.alphaEvolve(t,k1,k2,k3, backExitMinus,0) zzz= threePt[:,:5] dim= np.abs(zzz[:,4]*(k1*k2*k3)**2) biA= np.array([]) biR= np.array([]) for ii in range(1,nsnaps+1): bi=5.0/6.0*np.divide(zzz[ii,4], (np.multiply(zzz[ii,2],zzz[ii,3])+np.multiply(zzz[ii,1],zzz[ii,2]) + np.multiply(zzz[ii,1],zzz[ii,3]))) biR=np.append(biR,bi) biA=np.append(biA,dim[ii]) #fig3 = plt. biAOut=np.vstack((biAOut,biA)) biROut=np.vstack((biROut,biR)) betaA=np.append(betaA,beta) alphaA=np.append(alphaA,alpha) times = np.append(times,timebefore - time.time()) return (alphaA, betaA, biAOut, biROut, times)
def search(): try: start_time = tim() q = request.form['query'] q = q.lower() q = q.replace("logn", "log n") q = re.sub('\W+', ' ', q) print("searched query is ") print(q) llst = [] ll = localize.localizer(q) for l in ll: lst = [] file = "/static/" + str(l[0]) + ".webm" lst.append(file) lst.append(l[1]) lst.append(l[2]) ####added on 15th april llst.append(lst) # print(file) # print(l[1]) # lst = [] # lst.append("/static/Lec-01-Brief_Overview_of_the_course.webm") # lst.append(205) # llst.append(lst) # lst = [] # lst.append("/static/Lec-11-Deuteron-.webm") # lst.append(25) # llst.append(lst) # lst = [] # lst.append("/static/Lec-16_Theories_of_nuclear_forces.webm") # lst.append(589) # llst.append(lst) end_time = tim() total_time = end_time - start_time print("Time to Response = {} seconds".format(total_time)) return jsonify(query=q, result=llst) # path = os.path.abspath(q) # return render_template('index.html', llist=llst, query=q) except IOError as e: print(e)
def f(alpha, x0fac, x1fac, CE, CI, sum_a): seed() CEonCI = CE / CI epsilonXCE = Jepsilon * CE b = x1fac * (pareto(alpha, CI) + 1) + x0fac tf0 = tim() # mean of ensembles a,b is CI,CE while (abs(sum_a - CEonCI * sum(b)) > epsilonXCE) and (tim() - tf0 < timeout): b1 = x1fac * (pareto(alpha, CI) + 1) + x0fac if abs(sum_a - CEonCI * sum(b1)) < abs(sum_a - CEonCI * sum(b)): b = b1 # print sum_a, sum(b), abs(sum_a-CEonCI*sum(b))/abs(sum_a) if tim() - tf0 > timeout: with nfailures_tightbalance.get_lock(): nfailures_tightbalance.value += 1 return b
def stat(date, name): start = tim() data = [] results = [] response = requests.get( 'http://iss.moex.com/iss/history/engines/stock/markets/shares/boards/tqbr/securities.xml?date={}' .format(date)) soup = BeautifulSoup(response.text, 'lxml') a = soup.findAll('row') for i in a: if not i: continue if not i.has_attr('shortname'): continue if i['shortname'] == name: data.append(float(i['close'])) if data: max_day = 0 min_day = 0 for i, n in enumerate(data): try: if max_day < data[i + 1] - n: max_day = data[i + 1] - n else: continue if min_day > data[i + 1] - n: min_day = data[i + 1] - n except: pass data.sort() min = data[0] max = data[-1] results.append([data]) end = tim() return (start, end, results)
def test(): image_name = os.environ.get('imageName') image_uuid = test_lib.lib_get_image_by_name(image_name).uuid l3_name = os.environ.get('l3VlanNetworkName1') l3_net_uuid = test_lib.lib_get_l3_by_name(l3_name).uuid l3_uuid_list = [l3_net_uuid] vm_creation_option = test_util.VmOption() conditions = res_ops.gen_query_conditions('type', '=', 'UserVm') instance_offering_uuid = res_ops.query_resource(res_ops.INSTANCE_OFFERING, conditions)[0].uuid vm_name = '10k_vm-' + str(time.tim()) vm_creation_option.set_instance_offering_uuid(instance_offering_uuid) vm_creation_option.set_l3_uuids(l3_uuid_list) vm_creation_option.set_image_uuid(image_uuid) #vm_creation_option.set_data_disk_uuids(disk_offering_uuids) vm_creation_option.set_name(vm_name) vm = zstack_vm_header.ZstackTestVm() vm.set_creation_option(vm_creation_option) vm.create() test_obj_dict.add_vm(vm) time.sleep(3) vm.destroy() test_util.test_pass('Create/Destroy VM successfully')
# coding: utf-8 import json, sys, os, watson_developer_cloud from time import clock from time import time as tim discovery = watson_developer_cloud.DiscoveryV1( '2016-11-07', username='******', password='******') start_time = tim() environments = discovery.get_environments() environments = [x for x in environments['environments']] environment_id = environments[0]['environment_id'] # print(environment_id) collection = discovery.list_collections(environment_id) collections = [x for x in collection['collections']] collection_id = collections[1]['collection_id'] print(collection_id) #### hard coding the ids to make it faster environment_id = '168946e2-4f0b-4398-8a56-b6799d99c2c3' # collection_id = '8baa0d9c-57e8-479e-970c-8f95fca99ba5' ##old # collection_id = '9df12949-305b-4b4f-90a1-bf6e5e43c3ff' collection_id = '5d59fead-1f8f-46bd-8ee5-c6418bb961e5' ##iitd
def crawl_machine_learning(start_index: int, sort_order: str): # conn = connect_database() DBU = RDS_utils() check_axv = arxiv_id_check(DBU) machine_learning_categories = [ 'cs.CV', 'cs.CL', 'cs.LG', 'cs.AI', 'cs.NE', 'stat.ML', 'cs.MA' ] STEP = 100 articles_per_minute = STEP * 2 article_len = articles_per_minute # if start_index == -1: # start_index = Article.get_n_articles(conn) - STEP logging.info('crawling start') logging.info('start index : ' + str(start_index)) logging.info('sort_order : ' + sort_order) update_paper, insert_paper, insertfail, updatafail = 0, 0, 0, 0 while article_len == articles_per_minute: # query 100 results per iteration # wait 30 seconds per query try: start = time.time() articles = arxivpy.query(search_query=machine_learning_categories, start_index=start_index, max_index=start_index + articles_per_minute, results_per_iteration=STEP, wait_time=5, sort_by='lastUpdatedDate', sort_order=sort_order) # crawling log # logging.info('last: ' + articles[-1].get('published', '')) logging.info(str(start_index + STEP * 2) + ' articles crawled') # save articles for article in articles: data = Article(article, None).tolist() print("'{}' cralwed / arxiv_id : {}".format(data[1], data[0])) axvid, pubyear = data[0], data[6] data[1], qt = get_qtitle(data[1]) # title if pubyear: qt = qt.strip() + str(pubyear) pid = None if type(check_axv) == dict: if check_axv.get(axvid): pid = check_axv[axvid] else: pid = DBU.get_pid_from_arXiv_id(axvid) if not pid: pid = Duplication_check.check(qt) if pid: ori = DBU.get_paper_by_p_id(pid) data = Update_aXv_paper(ori, data) if DBU.update_axv(pid, data): update_paper += 1 else: updatafail += 1 else: if DBU.insert_axv(data): pid = DBU.get_pid_from_arXiv_id(axvid) Duplication_check.insert_title_year(qt, pid) insert_paper += 1 else: insertfail += 1 # compute start_index start_index += STEP * 2 # compute article_len article_len = len(articles) e = int(time.tim() - start) print('took {:02d}:{:02d}:{:02d} to crawl {} paper'.format( e // 3600, (e % 3600 // 60), e % 60, article_len)) # sleep 1 minute, no 30 seconds time.sleep(MINUTE / 2) except Exception as e: logging.error(e) print("insert fail : {}, update fail : {}".format( insertfail, updatafail)) DBU.DB.conn.close() return start_index, insert_paper, update_paper print("insert fail : {}, update fail : {}".format(insertfail, updatafail)) DBU.DB.conn.close() return start_index, insert_paper, update_paper
#!/usr/bin/env python import os import sys import struct import time import operator import threading import RPi.GPIO as GPIO GPIO.setmode(GPIO.BCM) # Use broadcom numbering # Set output pins - pin 26 BCM, pin 37 BOARD GPIO.setup(26, GPIO.OUT) # Set frequency to 70 Hz - period=20ms # Full Stop - High for 1.5 ms -- 7.5% duty cycle # Full Forward - high for 2.0 ms -- 10.0% duty cycle # Full Backward - high for 1.0 ms -- 5.0% duty cycle p = GPIO.PWM(26, 70) # Set BCM pin 26 at 70Hz p.start(7.5) # Set duty cycle to 7.5% and start # Spin for 30 seconds timeElapsed = time.tim() try: while time.time() - timeElapsed < 30: pass except KeyboardInterrupt: GPIO.cleanup() GPIO.cleanup()
def trigger_error(): # division_by_zero = 1 / 0 time.tim()
def network(**kwargs): with nfailures_tightbalance.get_lock(): nfailures_tightbalance.value = 0 globals().update(kwargs) nest.ResetKernel() startbuild = tim() order = int(orderCE / (epsilon * 4)) #2500 NE = 4 * order # number of excitatory neurons NI = 1 * order # number of inhibitory neurons N_neurons = NE + NI # number of neurons in total # N_rec = 50 # record from 50 neurons CE = int(epsilon * NE) # number of excitatory synapses per neuron CI = int(epsilon * NI) # number of inhibitory synapses per neuron #C_tot = int(CI + CE) # total number of synapses per neuron neuron_params = { "C_m": 1.0, "tau_m": tauMem, "t_ref": 2.0, "E_L": 0.0, "V_reset": Vr, "V_m": 0.0, "V_th": theta } J_ex = J # amplitude of excitatory postsynaptic potential J_in = -g * J_ex # amplitude of inhibitory postsynaptic potential nu_th = theta / (J * CE * tauMem) nu_ex = eta * nu_th p_rate = 1000.0 * nu_ex * CE nest.SetKernelStatus({ "resolution": dt, "print_time": True, "overwrite_files": True, "local_num_threads": nthreads }) nest.SetDefaults("iaf_psc_delta", neuron_params) nest.SetDefaults("poisson_generator", {"rate": p_rate / CE}) nodes_ex = nest.Create("iaf_psc_delta", NE) nodes_in = nest.Create("iaf_psc_delta", NI) noise = nest.Create("poisson_generator", CE) espikes = nest.Create("spike_detector") ispikes = nest.Create("spike_detector") nest.SetStatus(espikes, [{ "label": "%s/alpha%.2fespikes" % (datafolder, alpha), "withtime": True, "withgid": True, "to_file": True }]) nest.SetStatus(ispikes, [{ "label": "%s/alpha%.2fispikes" % (datafolder, alpha), "withtime": True, "withgid": True, "to_file": True }]) nest.CopyModel("static_synapse", "excitatory", { "weight": J_ex, "delay": delay }) nest.CopyModel("static_synapse", "inhibitory", { "weight": J_in, "delay": delay }) A_alpha = gamma(1 + alpha) * numpy.sin(numpy.pi * alpha / 2) / numpy.pi D = 0.5 # pareto pdf = alpha*x1**alpha/(x-x0)**(alpha+1), defined for x > x0+x1 x1fac = (2 * A_alpha * D / alpha)**(1 / alpha) x0fac = 1 - x1fac * alpha / (alpha - 1) J_noise_ex = J_ex * (x1fac * (pareto(alpha, (NE, CE)) + 1) + x0fac) J_noise_in = J_ex * (x1fac * (pareto(alpha, (NI, CE)) + 1) + x0fac) # correlated amplitude populations: samples_ex = x1fac * (pareto(alpha, (NE + NI, CE)) + 1) + x0fac # print x0fac,x1fac with Pool_(nthreads) as p: samples_in = numpy.array( p.map(partial(f, alpha, x0fac, x1fac, CE, CI), numpy.sum(samples_ex, 1), 1)) J_ex_tot = J_ex * samples_ex J_in_tot = J_in * samples_in multimeter = nest.Create("multimeter") nest.SetStatus( multimeter, { "to_memory": False, "withtime": True, "record_from": ["V_m"], "to_file": True, "label": "%s/alpha%.2fV_m" % (datafolder, alpha) }) #"interval": 100.0, nest.Connect(multimeter, nodes_ex + nodes_in) # nodes_ex[:N_rec]+... nest.Connect(noise, nodes_ex, syn_spec={ "model": "excitatory", "weight": J_noise_ex }) nest.Connect(noise, nodes_in, syn_spec={ "model": "excitatory", "weight": J_noise_in }) nest.Connect(nodes_ex, espikes, syn_spec="excitatory") # nodes_ex[:N_rec] nest.Connect(nodes_in, ispikes, syn_spec="excitatory") # nodes_in[:N_rec] conn_params_ex = {'rule': 'fixed_indegree', 'indegree': CE} nest.Connect(nodes_ex, nodes_ex + nodes_in, conn_params_ex, syn_spec={ "model": "excitatory", "weight": J_ex_tot }) conn_params_in = {'rule': 'fixed_indegree', 'indegree': CI} nest.Connect(nodes_in, nodes_ex + nodes_in, conn_params_in, syn_spec={ "model": "inhibitory", "weight": J_in_tot }) endbuild = tim() nest.Simulate(simtime) endsimulate = tim() events_ex = nest.GetStatus(espikes, "n_events")[0] events_in = nest.GetStatus(ispikes, "n_events")[0] rate_ex = events_ex / simtime * 1000.0 / NE rate_in = events_in / simtime * 1000.0 / NI num_synapses = (nest.GetDefaults("excitatory")["num_connections"] + nest.GetDefaults("inhibitory")["num_connections"]) build_time = endbuild - startbuild sim_time = endsimulate - endbuild print("Number of tight balance failures: {0}".format( nfailures_tightbalance.value)) print("alpha : {0}".format(alpha)) print("Number of neurons : {0}".format(N_neurons)) print("Number of synapses: {0}".format(num_synapses)) print(" Exitatory : {0}".format(int(CE * N_neurons) + N_neurons)) print(" Inhibitory : {0}".format(int(CI * N_neurons))) print("Excitatory rate : %.2f Hz" % rate_ex) print("Inhibitory rate : %.2f Hz" % rate_in) print("Building time : %.2f s" % build_time) print("Simulation time : %.2f s" % sim_time)
def networkclassical(**kwargs): globals().update(kwargs) nest.ResetKernel() startbuild = tim() order = int(orderCE / (epsilon * 4)) #2500 NE = 4 * order # number of excitatory neurons NI = 1 * order # number of inhibitory neurons N_neurons = NE + NI # number of neurons in total # N_rec = 50 # record from 50 neurons CE = int(epsilon * NE) # number of excitatory synapses per neuron CI = int(epsilon * NI) # number of inhibitory synapses per neuron #C_tot = int(CI + CE) # total number of synapses per neuron neuron_params = { "C_m": 1.0, "tau_m": tauMem, "t_ref": 2.0, "E_L": 0.0, "V_reset": Vr, "V_m": 0.0, "V_th": theta } J_ex = J # amplitude of excitatory postsynaptic potential J_in = -g * J_ex # amplitude of inhibitory postsynaptic potential nu_th = theta / (J * CE * tauMem) nu_ex = eta * nu_th p_rate = 1000.0 * nu_ex * CE nest.SetKernelStatus({ "resolution": dt, "print_time": True, "overwrite_files": True, "local_num_threads": nthreads }) nest.SetDefaults("iaf_psc_delta", neuron_params) nest.SetDefaults("poisson_generator", {"rate": p_rate}) # `CE` gen's in 1 nodes_ex = nest.Create("iaf_psc_delta", NE) nodes_in = nest.Create("iaf_psc_delta", NI) noise = nest.Create("poisson_generator") #, CE) in the superdiffusive case espikes = nest.Create("spike_detector") ispikes = nest.Create("spike_detector") nest.SetStatus(espikes, [{ "label": "%s/alpha%.2fespikes" % (datafolder, alpha), "withtime": True, "withgid": True, "to_file": True }]) nest.SetStatus(ispikes, [{ "label": "%s/alpha%.2fispikes" % (datafolder, alpha), "withtime": True, "withgid": True, "to_file": True }]) nest.CopyModel("static_synapse", "excitatory", { "weight": J_ex, "delay": delay }) nest.CopyModel("static_synapse", "inhibitory", { "weight": J_in, "delay": delay }) multimeter = nest.Create("multimeter") nest.SetStatus( multimeter, { "to_memory": False, "withtime": True, "record_from": ["V_m"], "to_file": True, "label": "%s/alpha%.2fV_m" % (datafolder, alpha) }) #"interval": 100.0, nest.Connect(multimeter, nodes_ex + nodes_in) # nodes_ex[:N_rec]+... nest.Connect(noise, nodes_ex, syn_spec="excitatory") nest.Connect(noise, nodes_in, syn_spec="excitatory") nest.Connect(nodes_ex, espikes, syn_spec="excitatory") # nodes_ex[:N_rec] nest.Connect(nodes_in, ispikes, syn_spec="excitatory") # nodes_in[:N_rec] conn_params_ex = {'rule': 'fixed_indegree', 'indegree': CE} nest.Connect(nodes_ex, nodes_ex + nodes_in, conn_params_ex, "excitatory") conn_params_in = {'rule': 'fixed_indegree', 'indegree': CI} nest.Connect(nodes_in, nodes_ex + nodes_in, conn_params_in, "inhibitory") endbuild = tim() nest.Simulate(simtime) endsimulate = tim() events_ex = nest.GetStatus(espikes, "n_events")[0] events_in = nest.GetStatus(ispikes, "n_events")[0] rate_ex = events_ex / simtime * 1000.0 / NE rate_in = events_in / simtime * 1000.0 / NI num_synapses = (nest.GetDefaults("excitatory")["num_connections"] + nest.GetDefaults("inhibitory")["num_connections"]) build_time = endbuild - startbuild sim_time = endsimulate - endbuild print("alpha : {0}".format(alpha)) print("Number of neurons : {0}".format(N_neurons)) print("Number of synapses: {0}".format(num_synapses)) print(" Exitatory : {0}".format(int(CE * N_neurons) + N_neurons)) print(" Inhibitory : {0}".format(int(CI * N_neurons))) print("Excitatory rate : %.2f Hz" % rate_ex) print("Inhibitory rate : %.2f Hz" % rate_in) print("Building time : %.2f s" % build_time) print("Simulation time : %.2f s" % sim_time)