Esempio n. 1
0
    def __calculate_features(self,
                             data,
                             feature_file_name,
                             window=DEFAULT_WINDOW):
        """
        Caculate time features and save as libsvm format.

        :param data: the time series to detect of
        :param feature_file_name: the file to use
        :param window: the length of window
        """
        features = []
        for index in data:
            if is_standard_time_series(index["data"], window):
                temp = []
                temp.append(
                    feature_service.extract_features(index["data"], window))
                temp.append(index["flag"])
                features.append(temp)
        try:
            ret_code, ret_data = self.__save_libsvm_format(
                features, feature_file_name)
        except Exception as ex:
            ret_code = TSD_CAL_FEATURE_ERR
            ret_data = str(ex)
        return ret_code, ret_data
    def __calculate_features(self, data, window=DEFAULT_WINDOW):
        """
        Caculate time features.

        :param data: the time series to detect of
        :param window: the length of window
        """
        features = []
        for index in data:
            if is_standard_time_series(index["data"], window):
                temp = []
                temp.append(feature_service.extract_features(index["data"], window))
                temp.append(index["flag"])
                features.append(temp)
        return features
Esempio n. 3
0
    def __calculate_features(self, data, feature_file_name, window=DEFAULT_WINDOW):
        """
        Caculate time features and save as libsvm format.

        :param data: the time series to detect of
        :param feature_file_name: the file to use
        :param window: the length of window
        """
        features = []
        for index in data:
            if is_standard_time_series(index["data"], window):
                temp = []
                temp.append(feature_service.extract_features(index["data"], window))
                temp.append(index["flag"])
                features.append(temp)
        try:
            ret_code, ret_data = self.__save_libsvm_format(features, feature_file_name)
        except Exception as ex:
            ret_code = TSD_CAL_FEATURE_ERR
            ret_data = str(ex)
        return ret_code, ret_data
    def predict(self, X, window=DEFAULT_WINDOW, model_name=DEFAULT_MODEL):
        """
        Predict if a particular sample is an outlier or not.

        :param X: the time series to detect of
        :param type X: pandas.Series
        :param window: the length of window
        :param type window: int
        :param model_name: the model to use
        :param type model_name: string
        :return 1 denotes normal, 0 denotes abnormal
        """
        if is_standard_time_series(X):
            ts_features = feature_service.extract_features(X, window)
            ts_features = np.array([ts_features])
            load_model = pickle.load(open(model_name, "rb"))
            gbdt_ret = load_model.predict_proba(ts_features)[:, 1]
            if gbdt_ret[0] < self.threshold:
                value = 0
            else:
                value = 1
            return [value, gbdt_ret[0]]
        else:
            return [0, 0]
Esempio n. 5
0
 def predict(self, X, window=DEFAULT_WINDOW, model_name=DEFAULT_MODEL):
     """
     :param X: the time series to detect of
     :type X: pandas.Series
     :param window: the length of window
     :param model_name: Use a xgboost model to predict a particular sample is an outlier or not.
     :return 1 denotes normal, 0 denotes abnormal.
     """
     if is_standard_time_series(X, window):
         ts_features = []
         features = [10]
         features.extend(feature_service.extract_features(X, window))
         ts_features.append(features)
         res_pred = xgb.DMatrix(np.array(ts_features))
         bst = xgb.Booster({'nthread': 4})
         bst.load_model(model_name)
         xgb_ret = bst.predict(res_pred)
         if xgb_ret[0] < self.threshold:
             value = 0
         else:
             value = 1
         return [value, xgb_ret[0]]
     else:
         return [0, 0]
Esempio n. 6
0
 def predict(self, X, window=DEFAULT_WINDOW, model_name=DEFAULT_MODEL):
     """
     :param X: the time series to detect of
     :type X: pandas.Series
     :param window: the length of window
     :param model_name: Use a xgboost model to predict a particular sample is an outlier or not.
     :return 1 denotes normal, 0 denotes abnormal.
     """
     if is_standard_time_series(X, window):
         ts_features = []
         features = [10]
         features.extend(feature_service.extract_features(X, window))
         ts_features.append(features)
         res_pred = xgb.DMatrix(np.array(ts_features))
         bst = xgb.Booster({'nthread': 4})
         bst.load_model(model_name)
         xgb_ret = bst.predict(res_pred)
         if xgb_ret[0] < self.threshold:
             value = 0
         else:
             value = 1
         return [value, xgb_ret[0]]
     else:
         return [0, 0]