Esempio n. 1
0
def test_trim_2D(random):
    node = Pipeline(steps=dummy_classifier)
    data = DummyData(rate=1).next(20)
    node._X_train = data.values
    node._X_train_indices = np.array(data.index.values, dtype=np.datetime64)
    start = np.datetime64('2018-01-01T00:00:05')
    stop = np.datetime64('2018-01-01T00:00:15')
    node._dimensions = 2
    node._accumulate(start, stop)
    assert len(node._X_train_indices) == 10
    assert len(node._X_train) == 10
Esempio n. 2
0
def test_fit_reset(caplog):
    caplog.set_level(logging.DEBUG)
    node = Pipeline(steps=dummy_classifier, event_reset='reset')
    node._status = -1 # bypass accumulation
    node._X_train = np.array([-1, 1, 1, 1])
    node._y_train = np.array([0, 1, 1, 1])
    node.i_events.data = make_event('training_starts')
    node.update()
    node.i_events.data = make_event('reset')
    node.update()
    assert caplog.record_tuples[0][2] == 'Start training'
    assert caplog.record_tuples[1][2] == 'Reset'
    assert node._status == 0
Esempio n. 3
0
def test_fit_success(caplog):
    caplog.set_level(logging.DEBUG)
    node = Pipeline(steps=dummy_classifier)
    node._status = -1 # bypass accumulation
    assert hasattr(node._pipeline[0], 'n_classes_') == False
    node._X_train = np.array([-1, 1, 1, 1])
    node._y_train = np.array([0, 1, 1, 1])
    node.i_events.data = make_event('training_starts')
    while node._status != 3:
        node.update()
    assert node._pipeline[0].n_classes_ == 2
    assert caplog.record_tuples[0][2] == 'Start training'
    assert caplog.record_tuples[1][2].startswith('Model fitted in')