def main(yolo): source = 'gst.jpg' # 0 or youtube or jpg URL = 'https://youtu.be/OI802VvUN38' FLAGScsv = 1 if FLAGScsv: csv_obj = save_csv() num_a2b, num_b2a = csv_obj.startday() #read old count from csv file else: num_a2b = 0 #start from zero num_b2a = 0 ina_old = set() ina_now = set() inb_old = set() inb_now = set() num_a2b_old = 0 num_b2a_old = 0 a2b_old = set() b2a_old = set() i = 0 points = [] tpro = 0. # Definition of the parameters max_cosine_distance = 0.1 nn_budget = None nms_max_overlap = 1.0 # deep_sort model_filename = 'model_data/mars-small128.pb' encoder = gdet.create_box_encoder(model_filename, batch_size=1) metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget) tracker = Tracker(metric) if source == 'youtube': width = 854 height = 480 sp.call(["youtube-dl", "--list-format", URL]) run = sp.Popen(["youtube-dl", "-f", "94", "-g", URL], stdout=sp.PIPE) VIDM3U8, _ = run.communicate() VIDM3U8 = str(VIDM3U8, 'utf-8') VIDM3U8 = "".join(("hls://", str(VIDM3U8))) p1 = sp.Popen([ 'streamlink', '--hls-segment-threads', '10', VIDM3U8, 'best', '-o', '-' ], stdout=sp.PIPE) p2 = sp.Popen([ 'ffmpeg', '-i', '-', '-f', 'image2pipe', "-loglevel", "quiet", "-pix_fmt", "bgr24", "-vcodec", "rawvideo", '-r', '10', "-" ], stdin=p1.stdout, stdout=sp.PIPE) else: video_capture = cv2.VideoCapture(source) print('video source : ', source) out = cv2.VideoWriter('outpy.avi', cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), 10, (608, 608)) # ___________________________________________________________________________________________________________________________________________MAIN LOOP while True: # get 1 frame if source == 'youtube': raw_frame = p2.stdout.read(width * height * 3) frame = np.fromstring(raw_frame, dtype='uint8').reshape( (height, width, 3)) elif source == 'gst.jpg': try: img_bin = open('gst.jpg', 'rb') buff = io.BytesIO() buff.write(img_bin.read()) buff.seek(0) temp_img = numpy.array(Image.open(buff), dtype=numpy.uint8) frame = cv2.cvtColor(temp_img, cv2.COLOR_RGB2BGR) except OSError: continue except TypeError: continue else: ret, frame = video_capture.read() if ret != True: break image = Image.fromarray(frame) # ______________________________________________________________________________________________________________________________DETECT WITH YOLO t1 = time.time() boxs = yolo.detect_image(image) # print("box_num",len(boxs)) features = encoder(frame, boxs) # score to 1.0 here). detections = [ Detection(bbox, 1.0, feature) for bbox, feature in zip(boxs, features) ] # Run non-max suppression. boxes = np.array([d.tlwh for d in detections]) scores = np.array([d.confidence for d in detections]) indices = preprocessing.non_max_suppression( boxes, nms_max_overlap, scores) #index that filtered detections = [detections[i] for i in indices] # ______________________________________________________________________________________________________________________________DRAW DETECT BOX for det in detections: bbox = det.to_tlbr() cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0, 0, 255), 1) # ___________________________________________________________________________Call the tracker tracker.predict() tracker.update(detections) # __________________________________________________________________________________________________________________________DRAW TRACK RECTANGLE ina_now = set() inb_now = set() for track in tracker.tracks: if track.is_confirmed() and track.time_since_update > 1: continue bbox = track.to_tlbr() cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (255, 255, 255), 2) cv2.putText(frame, str(track.track_id), (int(bbox[0]), int(bbox[1]) + 30), cv2.FONT_HERSHEY_SIMPLEX, 5e-3 * 200, (0, 255, 0), 3) dot = int(int(bbox[0]) + ((int(bbox[2]) - int(bbox[0])) / 2)), int(bbox[3] - 5) cv2.circle(frame, dot, 10, (0, 0, 255), -1) if points: dotc = Point(dot) ina_now.add(track.track_id) if ( polygon_a.contains(dotc) and track.track_id not in ina_now) else None inb_now.add(track.track_id) if ( polygon_b.contains(dotc) and track.track_id not in inb_now) else None # print('ina_now : ',ina_now,'ina_old : ',ina_old) for item in a2b: #check who pass a->b is already exist in a2b_cus a2b_cus.add(item) if item not in a2b_cus else None a2b = inb_now.intersection(ina_old) num_a2b += len(a2b - a2b_old) b2a = ina_now.intersection(inb_old) num_b2a += len(b2a - b2a_old) a2b_old = a2b b2a_old = b2a ina_old = ina_old.union(ina_now) inb_old = inb_old.union(inb_now) i += 1 if i > 10: #slow down backup old ina_old.pop() if len(ina_old) != 0 else None inb_old.pop() if len(inb_old) != 0 else None i = 0 # print('num_a2b : ',num_a2b,'num_b2a : ',num_b2a) # __________________________________________________________________________________________________________________________________________CSV if FLAGScsv and ((num_a2b_old != num_a2b) or (num_b2a_old != num_b2a)): record = [ time.strftime("%Y/%m/%d %H:%M:%S", time.localtime()), num_a2b, num_b2a, num_a2b - num_b2a ] csv_obj.save_this(record) num_a2b_old = num_a2b num_b2a_old = num_b2a # _________________________________________________________________________________________________________________________GET POINTS From click if (cv2.waitKey(1) == ord('p')): points = get_lines.run(frame, multi=True) print(points) #region if len(points) % 3 == 0 and len(points) / 3 == 1: #1 door print('1 door mode') polygon_a = Polygon([ points[0][0:2], points[0][2:4], points[1][0:2], points[1][2:4] ]) polygon_b = Polygon([ points[1][0:2], points[1][2:4], points[2][0:2], points[2][2:4] ]) elif len(points) % 3 == 0 and len(points) / 3 == 2: #2 door print('2 doors mode') polygon_a1 = Polygon([ points[0][0:2], points[0][2:4], points[1][0:2], points[1][2:4] ]) polygon_a2 = Polygon([ points[3][0:2], points[3][2:4], points[4][0:2], points[4][2:4] ]) polygon_a = [polygon_a1, polygon_a2] polygon_a = cascaded_union(polygon_a) polygon_b1 = Polygon([ points[1][0:2], points[1][2:4], points[2][0:2], points[2][2:4] ]) polygon_b2 = Polygon([ points[4][0:2], points[4][2:4], points[5][0:2], points[5][2:4] ]) polygon_b = [polygon_b1, polygon_b2] polygon_b = cascaded_union(polygon_b) else: print('Please draw 3 or 6 lines') break if points: for line in points: cv2.line(frame, line[0:2], line[2:4], (0, 255, 255), 2) # draw line cv2.putText(frame, 'in : ' + str(num_a2b), (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2, cv2.LINE_AA) cv2.putText(frame, 'out : ' + str(num_b2a), (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2, cv2.LINE_AA) out.write(frame) cv2.imshow('', frame) print('process time : ', time.time() - tpro) tpro = time.time() if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() out.release() cv2.destroyAllWindows()
def main(yolo): # Definition of the parameters max_cosine_distance = 0.3 nn_budget = None nms_max_overlap = 1.0 # deep_sort model_filename = 'model_data/mars-small128.pb' encoder = gdet.create_box_encoder(model_filename,batch_size=1) metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget) tracker = Tracker(metric) writeVideo_flag = True if len(sys.argv) > 1: video_capture = cv2.VideoCapture(sys.argv[1]) else: video_capture = cv2.VideoCapture(0) if writeVideo_flag: # Define the codec and create VideoWriter object w = int(video_capture.get(3)) h = int(video_capture.get(4)) fourcc = cv2.VideoWriter_fourcc(*'MJPG') if len(sys.argv) > 1: file_name = re.split("\.|/", sys.argv[1])[-2] else: file_name = "camera" out = cv2.VideoWriter(file_name + '_output.avi', fourcc, 30, (w, h)) list_file = open(file_name + '_detection.txt', 'w') frame_index = -1 fps = 0.0 while True: ret, frame = video_capture.read() # frame shape 640*480*3 if ret != True: break t1 = time.time() # image = Image.fromarray(frame) image = Image.fromarray(frame[...,::-1]) #bgr to rgb boxs, scores_ = yolo.detect_image(image) # print("box_num",len(boxs)) features = encoder(frame,boxs) # score to 1.0 here). detections = [Detection(bbox, 1.0, feature) for bbox, feature in zip(boxs, features)] # Run non-maxima suppression. boxes = np.array([d.tlwh for d in detections]) scores = np.array([d.confidence for d in detections]) indices = preprocessing.non_max_suppression(boxes, nms_max_overlap, scores) detections = [detections[i] for i in indices] # Call the tracker tracker.predict() tracker.update(detections) track_str = "" timestamp = time.time() localTime = time.localtime(timestamp) strTime = time.strftime("%Y-%m-%d %H:%M:%S", localTime) track_num = 0 for track in tracker.tracks: if not track.is_confirmed() or track.time_since_update > 1: continue bbox = track.to_tlbr() cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),(255,255,255), 2) # 2019-10-21 if len(scores_) > 0: if track_num >= len(scores_): continue cv2.putText(frame, "id: " + str(track.track_id) + " score: " + str(scores_[track_num])[:6] ,(int(bbox[0]), int(bbox[1])),0, 5e-3 * 200, (0,255,0),2) # 2019/10/21 add track_str if writeVideo_flag: track_str = track_str + str(strTime) + ";" + str(frame_index + 1) + ";" + str(track.track_id) + ";" + str(scores_[track_num])[:6] + ";" + str(boxs[track_num][0]) + ' ' + str(boxs[track_num][1]) + ' ' + str(boxs[track_num][2]) + ' ' + str(boxs[track_num][3]) + ' ' + "\n" track_num += 1 for det in detections: bbox = det.to_tlbr() cv2.rectangle(frame,(int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),(255,0,0), 2) cv2.imshow('', frame) if writeVideo_flag: # save a frame out.write(frame) frame_index = frame_index + 1 list_file.write(track_str) # 2019/10/21 """ 2019/10/21 if len(boxs) != 0: for i in range(0,len(boxs)): list_file.write(str(boxs[i][0]) + ' '+str(boxs[i][1]) + ' '+str(boxs[i][2]) + ' '+str(boxs[i][3]) + ' ') list_file.write('\n') """ fps = ( fps + (1./(time.time()-t1)) ) / 2 print("fps= %f"%(fps)) # Press Q to stop! if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() if writeVideo_flag: out.release() list_file.close() cv2.destroyAllWindows()
def main(yolo): source = 0 # 0 for webcam or youtube or jpg FLAGScsv = 1 if FLAGScsv: csv_obj = save_csv() num_a2b_start, num_b2a_start = csv_obj.startday( ) #read old count from csv file else: num_a2b_start = 0 #start from zero num_b2a_start = 0 ina_old = set() ina_now = set() inb_old = set() inb_now = set() num_a2b_old = 0 num_b2a_old = 0 a2b_old = set() b2a_old = set() i = 0 a2b_cus = set() b2a_cus = set() #points=[(462, 259, 608, 608), (439, 608, 387, 403), (279, 456, 285, 608), (182, 70, 249, 168), (218, 278, 116, 95), (60, 166, 235, 331)] with open('linefile', 'rb') as fp: points = pickle.load(fp) print('Load lines :', points) if points: if len(points) % 3 == 0 and len(points) / 3 == 1: #1 door print('1 door mode') polygon_a = Polygon([ points[0][0:2], points[0][2:4], points[1][0:2], points[1][2:4] ]) polygon_b = Polygon([ points[1][0:2], points[1][2:4], points[2][0:2], points[2][2:4] ]) elif len(points) % 3 == 0 and len(points) / 3 == 2: #2 door print('2 doors mode') polygon_a1 = Polygon([ points[0][0:2], points[0][2:4], points[1][0:2], points[1][2:4] ]) polygon_a2 = Polygon([ points[3][0:2], points[3][2:4], points[4][0:2], points[4][2:4] ]) polygon_a = [polygon_a1, polygon_a2] polygon_a = cascaded_union(polygon_a) polygon_b1 = Polygon([ points[1][0:2], points[1][2:4], points[2][0:2], points[2][2:4] ]) polygon_b2 = Polygon([ points[4][0:2], points[4][2:4], points[5][0:2], points[5][2:4] ]) polygon_b = [polygon_b1, polygon_b2] polygon_b = cascaded_union(polygon_b) tpro = 0. # Definition of the parameters max_cosine_distance = 0.7 nn_budget = None nms_max_overlap = 1.0 # deep_sort model_filename = 'model_data/mars-small128.pb' encoder = gdet.create_box_encoder(model_filename, batch_size=1) metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget) tracker = Tracker(metric) video_capture = cv2.VideoCapture(source) print('video source : ', source) #out = cv2.VideoWriter('output.avi',cv2.VideoWriter_fourcc('M','J','P','G'), 10, (608,608)) # ___________________________________________________________________________________________________________________________________________MAIN LOOP while True: # get 1 frame if source == 'youtube': raw_frame = p2.stdout.read(width * height * 3) frame = np.fromstring(raw_frame, dtype='uint8').reshape( (width, height, 3)) elif source == 'gst.jpg': try: img_bin = open('gst.jpg', 'rb') buff = io.BytesIO() buff.write(img_bin.read()) buff.seek(0) frame = numpy.array(Image.open(buff), dtype=numpy.uint8) #RGB #frame=adjust_gamma(frame,gamma=1.6) frame = cv2.resize(frame, (608, 608)) except OSError: continue except TypeError: continue else: ret, frame = video_capture.read() frame = cv2.resize( frame, (608, 608)) # maybe your webcam is not in the right size frame = cv2.cvtColor( frame, cv2.COLOR_RGB2BGR) # because opencv read as BGR if ret != True: break image = Image.fromarray(frame) # ______________________________________________________________________________________________________________________________DETECT WITH YOLO t1 = time.time() boxs = yolo.detect_image(image) # print("box_num",len(boxs)) features = encoder(frame, boxs) # score to 1.0 here). detections = [ Detection(bbox, 1.0, feature) for bbox, feature in zip(boxs, features) ] # Run non-max suppression. boxes = np.array([d.tlwh for d in detections]) scores = np.array([d.confidence for d in detections]) indices = preprocessing.non_max_suppression( boxes, nms_max_overlap, scores) #index that filtered detections = [detections[i] for i in indices] # ______________________________________________________________________________________________________________________________DRAW DETECT BOX for det in detections: bbox = det.to_tlbr() cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0, 0, 255), 1) # ___________________________________________________________________________Call the tracker tracker.predict() tracker.update(detections) frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) #change to BGR for show only # __________________________________________________________________________________________________________________________DRAW TRACK RECTANGLE ina_now = set() inb_now = set() for track in tracker.tracks: if track.is_confirmed() and track.time_since_update > 1: continue bbox = track.to_tlbr() cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (255, 255, 255), 2) cv2.putText(frame, str(track.track_id), (int(bbox[0]), int(bbox[1]) + 30), cv2.FONT_HERSHEY_SIMPLEX, 5e-3 * 200, (0, 255, 0), 3) dot = int(int(bbox[0]) + ((int(bbox[2]) - int(bbox[0])) / 2)), int(bbox[3] - 15) cv2.circle(frame, dot, 10, (0, 0, 255), -1) if points: dotc = Point(dot) ina_now.add(track.track_id) if ( polygon_a.contains(dotc) and track.track_id not in ina_now) else None inb_now.add(track.track_id) if ( polygon_b.contains(dotc) and track.track_id not in inb_now) else None # print('ina_now : ',ina_now,'ina_old : ',ina_old) # print('inb_now : ',inb_now,'inb_old : ',inb_old) a2b = inb_now.intersection(ina_old) for item in a2b: #check who pass a->b is already exist in a2b_cus a2b_cus.add(item) if item not in a2b_cus else None num_a2b = num_a2b_start + len(a2b_cus) b2a = ina_now.intersection(inb_old) for item in b2a: #check who pass a->b is already exist in a2b_cus b2a_cus.add(item) if item not in b2a_cus else None num_b2a = num_b2a_start + len(b2a_cus) a2b_old = a2b b2a_old = b2a ina_old = ina_now inb_old = inb_now # i+=1 # if i > 30 : #slow down backup old # ina_old =set() # inb_old =set() # i=0 # __________________________________________________________________________________________________________________CSV if FLAGScsv and ((num_a2b_old != num_a2b) or (num_b2a_old != num_b2a)): record = [ time.strftime("%Y/%m/%d %H:%M:%S", time.localtime()), num_a2b, num_b2a, num_a2b - num_b2a ] csv_obj.save_this(record) num_a2b_old = num_a2b num_b2a_old = num_b2a # _____________________________________________________________________________________________________GET POINTS From click if (cv2.waitKey(1) == ord('p')): points = get_lines.run(frame, multi=True) print(points) #region if len(points) % 3 == 0 and len(points) / 3 == 1: #1 door print('1 door mode') polygon_a = Polygon([ points[0][0:2], points[0][2:4], points[1][0:2], points[1][2:4] ]) polygon_b = Polygon([ points[1][0:2], points[1][2:4], points[2][0:2], points[2][2:4] ]) #save to file with open('linefile', 'wb') as fp: pickle.dump(points, fp) elif len(points) % 3 == 0 and len(points) / 3 == 2: #2 door print('2 doors mode') polygon_a1 = Polygon([ points[0][0:2], points[0][2:4], points[1][0:2], points[1][2:4] ]) polygon_a2 = Polygon([ points[3][0:2], points[3][2:4], points[4][0:2], points[4][2:4] ]) polygon_a = [polygon_a1, polygon_a2] polygon_a = cascaded_union(polygon_a) polygon_b1 = Polygon([ points[1][0:2], points[1][2:4], points[2][0:2], points[2][2:4] ]) polygon_b2 = Polygon([ points[4][0:2], points[4][2:4], points[5][0:2], points[5][2:4] ]) polygon_b = [polygon_b1, polygon_b2] polygon_b = cascaded_union(polygon_b) with open('linefile', 'wb') as fp: pickle.dump(points, fp) else: print('Please draw 3 or 6 lines') break if points: for line in points: cv2.line(frame, line[0:2], line[2:4], (0, 255, 255), 2) # draw line cv2.putText(frame, 'in : ' + str(num_a2b), (10, 100), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2, cv2.LINE_AA) cv2.putText(frame, 'out : ' + str(num_b2a), (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2, cv2.LINE_AA) #out.write(frame) # cv2.imshow('', frame) print('process time : ', time.time() - tpro) tpro = time.time() if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() #out.release() cv2.destroyAllWindows()
def main(yolo, url, CreateBoxEncoder, q): producer = None if KAFKA_ON: ip_port = '{}:{}'.format(KAFKA_IP, KAFKA_PORT) producer = KafkaProducer(bootstrap_servers=ip_port) logger.debug('open kafka') # Definition of the parameters max_cosine_distance = 0.3 nn_budget = None nms_max_overlap = 1.0 metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget) tracker = Tracker(metric) door = get_door(url) # init var center_mass = {} miss_ids = [] disappear_box = {} person_list = [] in_house = {} in_out_door = {"out_door_per": 0, "into_door_per": 0} only_id = str(uuid.uuid4()) logger.debug('rtmp: {} load finish'.format(url)) last_person_num = 0 last_monitor_people = 0 while True: t1 = time.time() if q.empty(): continue frame = q.get() image = Image.fromarray(frame[..., ::-1]) # bgr to rgb boxs, scores_ = yolo.detect_image(image) t2 = time.time() # print('5====={}======{}'.format(os.getpid(), round(t2 - t1, 4))) now = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())) logger.debug("box_num: {}".format(len(boxs))) features = CreateBoxEncoder.encoder(frame, boxs) # score to 1.0 here). # detections = [Detection(bbox, 1.0, feature) for bbox, feature in zip(boxs, features)] detections = [ Detection(bbox, scores_, feature) for bbox, scores_, feature in zip(boxs, scores_, features) ] # Run non-maxima suppression. boxes = np.array([d.tlwh for d in detections]) scores = np.array([d.confidence for d in detections]) indices = preprocessing.non_max_suppression(boxes, nms_max_overlap, scores) detections = [detections[i] for i in indices] # Call the tracker tracker.predict() tracker.update(detections) # 实时人员ID保存 track_id_list = [] cv2.rectangle(frame, (door[0], door[1]), (door[2], door[3]), (0, 0, 255), 2) door_half_h = int(int((door[1] + door[3]) / 2) * DOOR_HIGH) cv2.line(frame, (0, door_half_h), (111111, door_half_h), (0, 255, 0), 1, 1) high_score_ids = {} for track in tracker.tracks: # 当跟踪的目标在未来的20帧未出现,则判断丢失,保存至消失的id中间区 if track.time_since_update == MAX_AGE: miss_id = str(track.track_id) miss_ids.append(miss_id) if not track.is_confirmed() or track.time_since_update > 1: continue # 如果人id存在,就把人id的矩形框坐标放进center_mass 否则 创建一个key(人id),value(矩形框坐标)放进center_mass track_id = str(track.track_id) bbox = track.to_tlbr() near_door = is_near_door({track_id: bbox}, door) if track.score >= 0.92 and not near_door: high_score_ids[track_id] = [[ int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3]) ]] track_id_list.append(track_id) if track_id in center_mass: center_ = center_mass.get(track_id) if len(center_) > 49: center_.pop(0) center_.append( [int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])]) else: center_mass[track_id] = [[ int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3]) ]] # # -------------------------------------------- # # logger.debug('box1:{}'.format([int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])])) cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (255, 0, 0), 2) cv2.putText(frame, str(track.track_id), (int(bbox[0]), int(bbox[1])), 0, 5e-3 * 200, (0, 255, 0), 2) x0, y0 = int((bbox[0] + bbox[2]) / 2), int((bbox[1] + bbox[3]) / 2) cv2.putText(frame, str(round(track.score, 3)), (x0, y0), 0, 0.6, (0, 255, 0), 2) # cv2.circle(frame, (x0, y0), 2, (0, 255, 255), thickness=2, lineType=1, shift=0) # # -------------------------------------------- # x0, y0 = int((bbox[0] + bbox[2]) / 2), int((bbox[1] + bbox[3]) / 2) # w = abs(int(bbox[3]) - int(bbox[1])) # h = abs(int(bbox[2]) - int(bbox[0])) logger.info('id:{}, score:{}'.format(track_id, track.score)) for id in miss_ids: if id in center_mass.keys(): disappear_box[id] = center_mass[id] del center_mass[id] miss_ids.clear() # # 进出门判断 out_or_in(center_mass, door, in_house, disappear_box, in_out_door) # near_door = is_near_door(center_mass, door, disappear_id) # 相对精准识别人 用来实时传递当前人数 box_score_person = [scores for scores in scores_ if scores > 0.72] person_sum = in_out_door['into_door_per'] - in_out_door['out_door_per'] # if person_sum <= len(high_score_ids) and not near_door: if person_sum <= len(high_score_ids): # 当时精准人数大于进出门之差时 来纠正进门人数 并把出门人数置为0 if person_sum == len(high_score_ids) == 1: pass # print('person_sum == len(high_score_ids) == 1') else: logger.warning('reset in_out_door person') in_out_door['out_door_per'] = 0 in_out_door['into_door_per'] = len(high_score_ids) in_house.update(high_score_ids) # print('high score:{}'.format(high_score_ids)) logger.warning('22222222-id: {} after into of door: {}'.format( in_house.keys(), in_out_door['into_door_per'])) person_sum = len(high_score_ids) if in_out_door['into_door_per'] == in_out_door['out_door_per'] > 0: in_out_door['into_door_per'] = in_out_door['out_door_per'] = 0 if len(person_list) > 100: person_list.pop(0) person_list.append(person_sum) # 从url提取摄像头编号 pattern = str(url)[7:].split(r"/") logger.debug('pattern {}'.format(pattern[VIDEO_CONDE])) video_id = pattern[VIDEO_CONDE] logger.info('object tracking cost {}'.format(time.time() - t1)) # 当列表中都是0的时候 重置进出门人数和所有字典参数变量 if person_list.count(0) == len(person_list) == 101: logger.debug('long time person is 0') in_out_door['into_door_per'] = 0 in_out_door['out_door_per'] = 0 in_house.clear() logger.warning('All Clear') cv2.putText(frame, "person: " + str(person_sum), (40, 40), 0, 5e-3 * 200, (0, 255, 0), 2) cv2.putText(frame, "now_per: " + str(len(box_score_person)), (280, 40), 0, 5e-3 * 200, (0, 255, 0), 2) # 当满足条件时候 往前端模块发送人员的信息 if (last_person_num != person_sum or last_monitor_people != len(box_score_person)) and producer: monitor_people_num = len(box_score_person) logger.debug("person-sum:{} monitor-people_num:{}".format( person_sum, monitor_people_num)) # if int(time.time()) - last_time >= 1: cv2.imwrite( "/opt/code/deep_sort_yolov3/image/{}.jpg".format( str(uuid.uuid4())), frame) # print('save img success') save_to_kafka(TOPIC_SHOW, now, person_sum, url, producer, video_id, monitor_people_num, only_id) if last_person_num > 0 and person_sum == 0: only_id = str(uuid.uuid4()) if last_person_num == 0 and person_sum > 0: save_to_kafka(TOPIC_NVR, now, person_sum, url, producer, video_id, len(box_score_person), only_id) # last_time = int(time.time()) last_person_num = person_sum last_monitor_people = len(box_score_person) # 当满足条件时候 往NVR模块发送信息 logger.info('url:{} into_door_per: {}'.format( url, in_out_door['into_door_per'])) logger.info('url:{} out_door_per: {}'.format( url, in_out_door['out_door_per'])) logger.info('url:{} in_house: {}'.format(url, in_house)) logger.info('url:{} monitor_people_num: {}'.format( url, len(box_score_person))) logger.info('url:{} person_sum: {}'.format(url, person_sum)) logger.info('GPU image load cost {}'.format(time.time() - t1)) t3 = time.time() fps = round(1 / (round(t3 - t1, 4)), 3) # print('pid:{}===fps:{}===time:{}'.format(os.getpid(), fps, round(t3 - t1, 4))) # print('*' * 30) fps = ((1 / (time.time() - t1))) logger.debug("fps= %f" % (fps)) cv2.imshow('', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break
pady=5, ipadx=0, ipady=0, sticky=W + E) Label(settingFrame, text=" Đường dẫn tập tin").grid(row=3, sticky=W) directoryText = StringVar() directory = Entry(settingFrame, width=32, textvariable=directoryText) directory.grid(row=4, padx=5, pady=5, ipadx=0, ipady=0, sticky=W) Label(settingFrame, text=" Trạng thái phân tích").grid(row=6, sticky=W) statusText = StringVar() status = Entry(settingFrame, width=32, textvariable=statusText) status.grid(row=7, padx=5, pady=5, ipadx=0, ipady=0, sticky=W) statusText.set(" Đang chờ tập tin") Label(settingFrame, text=" Ngày giờ hệ thống").grid(row=9, sticky=W) curTime = Entry(settingFrame, width=32) curTime.insert(15, time.strftime(" %m/%d/%Y, %H:%M:%S %p")) curTime.grid(row=10, padx=5, pady=5, ipadx=0, ipady=0, sticky=W) progress = Progressbar(settingFrame, orient=HORIZONTAL, mode="determinate") progress.grid(row=11, padx=5, pady=5, ipadx=0, ipady=0, sticky=N + W + E + S) progress["value"] = 0 app8 = Frame(infoFrame) app8.pack(side=TOP, fill="both") lmain8 = Label(app8) lmain8.grid(padx=5, pady=5, ipadx=0, ipady=0, sticky=E + S) cv2image8 = cv2.imread("info.png") cv2image8 = cv2.cvtColor(cv2image8, cv2.COLOR_BGR2RGBA) cv2image8 = cv2.resize(cv2image8, (195, 200)) img8 = Image.fromarray(cv2image8) imgtk8 = ImageTk.PhotoImage(image=img8) lmain8.imgtk8 = imgtk8 lmain8.configure(image=imgtk8)