Esempio n. 1
0
    def test_load_dpm_detections(self):
        conf = dict(self.config)
        conf['detectors'] = ['dpm']
        policy = DatasetPolicy(self.dataset, self.train_dataset, **conf)
        assert (policy.detectors == ['dpm'])
        dets = policy.load_ext_detections(self.dataset,
                                          'dpm_may25',
                                          force=True)
        dets = dets.with_column_omitted('time')

        # load the ground truth dets, processed in Matlab
        # (timely/data/test_support/concat_dets.m)
        filename = os.path.join(config.test_support_dir, 'val_dets.mat')
        dets_correct = Table(
            scipy.io.loadmat(filename)['dets'], [
                'x1', 'y1', 'x2', 'y2', 'dummy', 'dummy', 'dummy', 'dummy',
                'score', 'cls_ind', 'img_ind'
            ], 'dets_correct')
        dets_correct = dets_correct.subset(
            ['x1', 'y1', 'x2', 'y2', 'score', 'cls_ind', 'img_ind'])
        dets_correct.arr[:, :4] -= 1
        dets_correct.arr[:, :4] = BoundingBox.convert_arr_from_corners(
            dets_correct.arr[:, :4])
        dets_correct.cols = ['x', 'y', 'w', 'h', 'score', 'cls_ind', 'img_ind']

        print('----mine:')
        print(dets)
        print('----correct:')
        print(dets_correct)
        assert (dets_correct == dets)
    def test_load_dpm_detections(self):
        conf = dict(self.config)
        conf["detectors"] = ["dpm"]
        policy = DatasetPolicy(self.dataset, self.train_dataset, **conf)
        assert policy.detectors == ["dpm"]
        dets = policy.load_ext_detections(self.dataset, "dpm_may25", force=True)
        dets = dets.with_column_omitted("time")

        # load the ground truth dets, processed in Matlab
        # (timely/data/test_support/concat_dets.m)
        filename = os.path.join(config.test_support_dir, "val_dets.mat")
        dets_correct = Table(
            scipy.io.loadmat(filename)["dets"],
            ["x1", "y1", "x2", "y2", "dummy", "dummy", "dummy", "dummy", "score", "cls_ind", "img_ind"],
            "dets_correct",
        )
        dets_correct = dets_correct.subset(["x1", "y1", "x2", "y2", "score", "cls_ind", "img_ind"])
        dets_correct.arr[:, :4] -= 1
        dets_correct.arr[:, :4] = BoundingBox.convert_arr_from_corners(dets_correct.arr[:, :4])
        dets_correct.cols = ["x", "y", "w", "h", "score", "cls_ind", "img_ind"]

        print ("----mine:")
        print (dets)
        print ("----correct:")
        print (dets_correct)
        assert dets_correct == dets
 def test_learn_weights(self):
     dataset = Dataset("full_pascal_val")
     train_dataset = Dataset("full_pascal_train")
     dataset.images = dataset.images[:20]
     train_dataset.images = train_dataset.images[:20]
     dp = DatasetPolicy(dataset, train_dataset, self.weights_dataset_name, **self.config)
     weights = dp.learn_weights()
Esempio n. 4
0
 def test_learn_weights(self):
     dataset = Dataset('full_pascal_val')
     train_dataset = Dataset('full_pascal_train')
     dataset.images = dataset.images[:20]
     train_dataset.images = train_dataset.images[:20]
     dp = DatasetPolicy(dataset, train_dataset, self.weights_dataset_name,
                        **self.config)
     weights = dp.learn_weights()
Esempio n. 5
0
 def __init__(self):
     self.dataset = Dataset('test_pascal_val')
     self.train_dataset = Dataset('test_pascal_train')
     self.weights_dataset_name = 'test_pascal_val'
     self.config = {
         'suffix': 'default',
         'detectors':
         ['perfect'],  # perfect,perfect_with_noise,dpm,csc_default,csc_half
         'policy_mode': 'random',
         'bounds': None,
         'weights_mode':
         'manual_1'  # manual_1, manual_2, manual_3, greedy, rl
     }
     self.dp = DatasetPolicy(self.dataset, self.train_dataset,
                             self.weights_dataset_name, **self.config)
 def __init__(self):
     self.dataset = Dataset("test_pascal_val")
     self.train_dataset = Dataset("test_pascal_train")
     self.weights_dataset_name = "test_pascal_val"
     self.config = {
         "suffix": "default",
         "detectors": ["perfect"],  # perfect,perfect_with_noise,dpm,csc_default,csc_half
         "policy_mode": "random",
         "bounds": None,
         "weights_mode": "manual_1",  # manual_1, manual_2, manual_3, greedy, rl
     }
     self.dp = DatasetPolicy(self.dataset, self.train_dataset, self.weights_dataset_name, **self.config)
Esempio n. 7
0
class TestDatasetPolicy:
    def __init__(self):
        self.dataset = Dataset('test_pascal_val')
        self.train_dataset = Dataset('test_pascal_train')
        self.weights_dataset_name = 'test_pascal_val'
        self.config = {
            'suffix': 'default',
            'detectors':
            ['perfect'],  # perfect,perfect_with_noise,dpm,csc_default,csc_half
            'policy_mode': 'random',
            'bounds': None,
            'weights_mode':
            'manual_1'  # manual_1, manual_2, manual_3, greedy, rl
        }
        self.dp = DatasetPolicy(self.dataset, self.train_dataset,
                                self.weights_dataset_name, **self.config)

    def test_run_on_dataset(self):
        # run on test dataset
        dets, clses, samples = self.dp.run_on_dataset(force=True)
        assert (len(samples) == clses.shape[0])
        assert (len(samples) == self.dp.dataset.num_images() *
                len(self.dp.actions))
        train_dets, train_clses, train_samples = self.dp.run_on_dataset(
            train=True, force=True)
        assert (len(train_samples) == train_clses.shape[0])
        assert (len(train_samples) == self.dp.train_dataset.num_images() *
                len(self.dp.actions))

    def test_unique_samples(self):
        "Test the correctness of making a list of samples unique."
        dets, clses, samples = self.dp.run_on_dataset(force=True)
        new_sample = copy.deepcopy(samples[11])
        new_sample2 = copy.deepcopy(samples[11])
        new_sample2.dt = -40  # an unreasonable value
        assert (new_sample in samples)
        assert (new_sample2 not in samples)

    def test_output_det_statistics(self):
        self.dp.output_det_statistics()

    def test_learn_weights(self):
        dataset = Dataset('full_pascal_val')
        train_dataset = Dataset('full_pascal_train')
        dataset.images = dataset.images[:20]
        train_dataset.images = train_dataset.images[:20]
        dp = DatasetPolicy(dataset, train_dataset, self.weights_dataset_name,
                           **self.config)
        weights = dp.learn_weights()

    def test_regress(self):
        dets, clses, samples = self.dp.run_on_dataset(force=True)
        weights, error = self.dp.regress(samples, 'greedy')
        print "Weights after %d samples:\n %s" % (len(samples), weights)
        print "Error after %d samples: %s" % (len(samples), error)
        samples += samples
        weights, error = self.dp.regress(samples, 'greedy')
        print "Weights after %d samples:\n %s" % (len(samples), weights)
        print "Error after %d samples: %s" % (len(samples), error)
        samples += samples
        weights, error = self.dp.regress(samples, 'greedy')
        print "Weights after %d samples:\n %s" % (len(samples), weights)
        print "Error after %d samples: %s" % (len(samples), error)

    def test_load_weights(self):
        modes = ['manual_1', 'manual_2', 'manual_3']
        for mode in modes:
            print "%s weights:" % mode
            self.dp.weights_mode = mode
            self.dp.load_weights()
            print self.dp.get_reshaped_weights()
            assert (self.dp.weights.shape[0] == len(self.dp.actions) *
                    BeliefState.num_features)
            self.dp.write_weights_image('temp_weights_%s.png' % mode)

    def test_perfect_detector(self):
        dets, clses, samples = self.dp.run_on_dataset(force=True)
        #embed()
        dets = dets.subset(['x', 'y', 'w', 'h', 'cls_ind', 'img_ind'])
        gt = self.dataset.get_det_gt()
        gt = gt.subset(['x', 'y', 'w', 'h', 'cls_ind', 'img_ind'])

        # TODO: does this make sense?
        dets.sort_by_column('x')
        gt.sort_by_column('x')
        print dets
        print gt
        assert (dets == gt)

    def test_load_dpm_detections(self):
        conf = dict(self.config)
        conf['detectors'] = ['dpm']
        policy = DatasetPolicy(self.dataset, self.train_dataset, **conf)
        assert (policy.detectors == ['dpm'])
        dets = policy.load_ext_detections(self.dataset,
                                          'dpm_may25',
                                          force=True)
        dets = dets.with_column_omitted('time')

        # load the ground truth dets, processed in Matlab
        # (timely/data/test_support/concat_dets.m)
        filename = os.path.join(config.test_support_dir, 'val_dets.mat')
        dets_correct = Table(
            scipy.io.loadmat(filename)['dets'], [
                'x1', 'y1', 'x2', 'y2', 'dummy', 'dummy', 'dummy', 'dummy',
                'score', 'cls_ind', 'img_ind'
            ], 'dets_correct')
        dets_correct = dets_correct.subset(
            ['x1', 'y1', 'x2', 'y2', 'score', 'cls_ind', 'img_ind'])
        dets_correct.arr[:, :4] -= 1
        dets_correct.arr[:, :4] = BoundingBox.convert_arr_from_corners(
            dets_correct.arr[:, :4])
        dets_correct.cols = ['x', 'y', 'w', 'h', 'score', 'cls_ind', 'img_ind']

        print('----mine:')
        print(dets)
        print('----correct:')
        print(dets_correct)
        assert (dets_correct == dets)
 def setup(self):
   train_dataset = Dataset('test_pascal_train',force=True)
   dataset = Dataset('test_pascal_val',force=True)
   self.dp = DatasetPolicy(dataset,train_dataset,detector='perfect')
   self.evaluation = Evaluation(test_config, self.dp)    
class TestDatasetPolicy:
    def __init__(self):
        self.dataset = Dataset("test_pascal_val")
        self.train_dataset = Dataset("test_pascal_train")
        self.weights_dataset_name = "test_pascal_val"
        self.config = {
            "suffix": "default",
            "detectors": ["perfect"],  # perfect,perfect_with_noise,dpm,csc_default,csc_half
            "policy_mode": "random",
            "bounds": None,
            "weights_mode": "manual_1",  # manual_1, manual_2, manual_3, greedy, rl
        }
        self.dp = DatasetPolicy(self.dataset, self.train_dataset, self.weights_dataset_name, **self.config)

    def test_run_on_dataset(self):
        # run on test dataset
        dets, clses, samples = self.dp.run_on_dataset(force=True)
        assert len(samples) == clses.shape[0]
        assert len(samples) == self.dp.dataset.num_images() * len(self.dp.actions)
        train_dets, train_clses, train_samples = self.dp.run_on_dataset(train=True, force=True)
        assert len(train_samples) == train_clses.shape[0]
        assert len(train_samples) == self.dp.train_dataset.num_images() * len(self.dp.actions)

    def test_unique_samples(self):
        "Test the correctness of making a list of samples unique."
        dets, clses, samples = self.dp.run_on_dataset(force=True)
        new_sample = copy.deepcopy(samples[11])
        new_sample2 = copy.deepcopy(samples[11])
        new_sample2.dt = -40  # an unreasonable value
        assert new_sample in samples
        assert new_sample2 not in samples

    def test_output_det_statistics(self):
        self.dp.output_det_statistics()

    def test_learn_weights(self):
        dataset = Dataset("full_pascal_val")
        train_dataset = Dataset("full_pascal_train")
        dataset.images = dataset.images[:20]
        train_dataset.images = train_dataset.images[:20]
        dp = DatasetPolicy(dataset, train_dataset, self.weights_dataset_name, **self.config)
        weights = dp.learn_weights()

    def test_regress(self):
        dets, clses, samples = self.dp.run_on_dataset(force=True)
        weights, error = self.dp.regress(samples, "greedy")
        print "Weights after %d samples:\n %s" % (len(samples), weights)
        print "Error after %d samples: %s" % (len(samples), error)
        samples += samples
        weights, error = self.dp.regress(samples, "greedy")
        print "Weights after %d samples:\n %s" % (len(samples), weights)
        print "Error after %d samples: %s" % (len(samples), error)
        samples += samples
        weights, error = self.dp.regress(samples, "greedy")
        print "Weights after %d samples:\n %s" % (len(samples), weights)
        print "Error after %d samples: %s" % (len(samples), error)

    def test_load_weights(self):
        modes = ["manual_1", "manual_2", "manual_3"]
        for mode in modes:
            print "%s weights:" % mode
            self.dp.weights_mode = mode
            self.dp.load_weights()
            print self.dp.get_reshaped_weights()
            assert self.dp.weights.shape[0] == len(self.dp.actions) * BeliefState.num_features
            self.dp.write_weights_image("temp_weights_%s.png" % mode)

    def test_perfect_detector(self):
        dets, clses, samples = self.dp.run_on_dataset(force=True)
        # embed()
        dets = dets.subset(["x", "y", "w", "h", "cls_ind", "img_ind"])
        gt = self.dataset.get_det_gt()
        gt = gt.subset(["x", "y", "w", "h", "cls_ind", "img_ind"])

        # TODO: does this make sense?
        dets.sort_by_column("x")
        gt.sort_by_column("x")
        print dets
        print gt
        assert dets == gt

    def test_load_dpm_detections(self):
        conf = dict(self.config)
        conf["detectors"] = ["dpm"]
        policy = DatasetPolicy(self.dataset, self.train_dataset, **conf)
        assert policy.detectors == ["dpm"]
        dets = policy.load_ext_detections(self.dataset, "dpm_may25", force=True)
        dets = dets.with_column_omitted("time")

        # load the ground truth dets, processed in Matlab
        # (timely/data/test_support/concat_dets.m)
        filename = os.path.join(config.test_support_dir, "val_dets.mat")
        dets_correct = Table(
            scipy.io.loadmat(filename)["dets"],
            ["x1", "y1", "x2", "y2", "dummy", "dummy", "dummy", "dummy", "score", "cls_ind", "img_ind"],
            "dets_correct",
        )
        dets_correct = dets_correct.subset(["x1", "y1", "x2", "y2", "score", "cls_ind", "img_ind"])
        dets_correct.arr[:, :4] -= 1
        dets_correct.arr[:, :4] = BoundingBox.convert_arr_from_corners(dets_correct.arr[:, :4])
        dets_correct.cols = ["x", "y", "w", "h", "score", "cls_ind", "img_ind"]

        print ("----mine:")
        print (dets)
        print ("----correct:")
        print (dets_correct)
        assert dets_correct == dets
 def setUp(self):
     d = Dataset(test_config, 'test_pascal_trainval').load_from_pascal('trainval', force=True)
     d2 = Dataset(test_config, 'test_pascal_test').load_from_pascal('test', force=True)
     config = {'detectors': ['csc_default']}
     self.dp = DatasetPolicy(test_config, d, d2, **config)
     self.bs = BeliefState(d, self.dp.actions)