#PLOTTING CORRECTION TO SHRAVAN'S KERNEL import timing kernclock = timing.stopclock() #stopclock object for timing program tstamp = kernclock.lap import numpy as np import matplotlib.pyplot as plt import functions as fn from os import getcwd tstamp('library loading') #printing elapsed time from beginning of runtime n,l,m = 1,60,0 n_,l_,m_ = n,l,2 nl = fn.find_nl(n,l) nl_ = fn.find_nl(n_,l_) s = 22 t = m_-m #Savitsky golay filter for smoothening window = 45 #must be odd order = 3 if(nl == None or nl_ == None): print("Mode not found. Exiting."); exit() #loading required functions eig_dir = (getcwd() + '/eig_files') U,V = fn.load_eig(n,l,eig_dir) U_,V_= fn.load_eig(n_,l_,eig_dir)
import numpy as np import matplotlib.pyplot as plt import submatrix import functions as fn import sys import timing import matplotlib.gridspec as gridspec plt.ion() clock1 = timing.stopclock() tstamp = clock1.lap #all quantities in cgs #M_sol = 1.989e33 g #R_sol = 6.956e10 cm #B_0 = 10e5 G #OM = np.sqrt(4*np.pi*R_sol*B_0**2/M_sol) #rho_0 = M_sol/(4pi R_sol^3/3) = 1.41 ~ 1g/cc (for kernel calculation) OM = np.loadtxt( 'OM.dat') #importing normalising frequency value from file (in Hz (cgs)) field_type = 'mixed' r = np.loadtxt('r.dat') r_start, r_end = 0., 1. start_ind, end_ind = [fn.nearest_index(r, pt) for pt in (r_start, r_end)] r = r[start_ind:end_ind] #1 = Low, 2 = High. A=Core, B=Tachocline, C=Surface A = 1 B = 1 C = 1
import numpy as np import functions as fn import scipy.integrate import get_kernels as gkerns import h_components as hcomps import sys import math #code snippet for timing the code import timing clock2 = timing.stopclock() tstamp = clock2.lap OM = np.loadtxt('OM.dat') R_sol = 6.956e10 #cm def lorentz(n_,n,l_,l,r,beta =0., field_type = 'dipolar'): m = np.arange(-l,l+1,1) #-l<=m<=l m_ = np.arange(-l_,l_+1,1) #-l_<=m<=l_ s = np.array([0,1,2]) s0 = 1 t0 = np.arange(-s0,s0+1) #transition radii for mixed field type R1 = r[0] R2 = r[-1] B_mu_t_r = fn.getB_comps(s0,r,R1,R2,field_type) get_h = hcomps.getHcomps(s,m_,m,s0,t0,r,B_mu_t_r, beta) tstamp() H_super = get_h.ret_hcomps() #- sign due to i in B
import timing import numpy as np import matplotlib.pyplot as plt import functions as fn from os import getcwd import get_kernels as gkerns kernclock = timing.stopclock() tstamp = kernclock.lap r = np.loadtxt('r.dat') r_start = 0.68 r_end = 1.0 start_ind = fn.nearest_index(r, r_start) end_ind = fn.nearest_index(r, r_end) r = r[start_ind:end_ind + 1] OM = np.loadtxt('OM.dat') # n1,l1 = 4,3 # n2,l2 = 1,10 # n3,l3 = 0,60 n1, l1 = 15, 102 n2, l2 = 15, 50 n3, l3 = 15, 10 omega_list = np.loadtxt('muhz.dat') omega_nl1 = omega_list[fn.find_nl(n1, l1)] omega_nl2 = omega_list[fn.find_nl(n2, l2)] omega_nl3 = omega_list[fn.find_nl(n3, l3)]