Esempio n. 1
0
    def __init__(self, in_channels):
        super(Classifier3, self).__init__()

        self.conv0 = nn.Conv2d(in_channels,
                               in_channels // 6,
                               kernel_size=3,
                               stride=2)
        self.bn0 = nn.BatchNorm2d(in_channels // 6)
        # self.pool1 = nn.MaxPool2d(kernel_size=2)

        self.conv1 = nn.Conv2d(in_channels // 6,
                               in_channels // 6,
                               kernel_size=3,
                               padding=1)
        self.bn1 = nn.BatchNorm2d(in_channels // 6)

        self.conv2 = nn.Conv2d(in_channels // 6,
                               in_channels // 8,
                               kernel_size=3,
                               padding=1)
        self.bn2 = nn.BatchNorm2d(in_channels // 8)

        # self.conv3 = nn.Conv2d(in_channels//4, in_channels//2, kernel_size=1)
        # self.bn3 = nn.BatchNorm2d(in_channels//2)

        self.global_pool = SelectAdaptivePool2d(pool_type="avg")

        self.relu = nn.ReLU(inplace=True)
        self.linear0 = nn.Linear(in_channels // 8, 1792)
        # self.linear1 = nn.Linear(1792, 786)
        self.linear_final = nn.Linear(1792, 1)
    def __init__(self, model_name, pretrained, input_channels, pool_type,
                 num_classes, out_features, drop_rate, output_stride):
        super(ResNet, self).__init__()

        backbone = create_model(model_name=model_name,
                                pretrained=pretrained,
                                output_stride=output_stride)
        if input_channels > 3:
            if hasattr(backbone, "layer0"):
                old_conv = backbone.layer0.conv1
            else:
                old_conv = backbone.conv1
            new_conv = nn.Conv2d(input_channels, old_conv.out_channels,
                                 old_conv.kernel_size, old_conv.stride,
                                 old_conv.padding, old_conv.dilation,
                                 old_conv.groups, old_conv.bias)
            new_conv.weight.data[:, :3, ...] = old_conv.weight.data
            if hasattr(backbone, "layer0"):
                backbone.layer0.conv1 = new_conv
            else:
                backbone.conv1 = new_conv

        if hasattr(backbone, "layer0"):
            self.stem = backbone.layer0
        else:
            layer0_modules = [('conv1', backbone.conv1), ('bn1', backbone.bn1),
                              ('relu', backbone.act1),
                              ('maxpool', backbone.maxpool)]
            self.stem = nn.Sequential(OrderedDict(layer0_modules))

        current_stride = 4  # = stride 2 conv -> stride 2 max pool
        self._out_feature_strides = {"stem": current_stride}
        self._out_feature_channels = {"stem": 64}

        self.stages_and_names = []
        for i in range(4):
            stage = getattr(backbone, f"layer{i + 1}")
            name = f"res{i + 2}"
            self.add_module(name, stage)
            self.stages_and_names.append((stage, name))
            self._out_feature_strides[name] = current_stride = int(
                current_stride * np.prod([l.stride for l in stage]))
            try:
                self._out_feature_channels[name] = stage[-1].bn3.num_features
            except:
                self._out_feature_channels[name] = stage[
                    -1].conv2.attn.fc_select.out_channels

        if num_classes is not None:
            self.global_pool = SelectAdaptivePool2d(pool_type=pool_type)
            self.num_features = backbone.num_features * self.global_pool.feat_mult(
            )
            self.linear = nn.Linear(self.num_features, num_classes)

        del backbone
        self.drop_rate = drop_rate
        self.num_classes = num_classes
        self._out_features = out_features
Esempio n. 3
0
 def __init__(self, encoder, num_classes, dropout=0):
     super().__init__()
     self.ela_bn = Normalize(
         mean=[3.26, 2.09, 2.71, 2.29, 1.24, 1.8, 1.7, 0.77, 1.27],
         std=[4.19, 2.77, 3.51, 3.17, 1.68, 2.49, 2.63, 1.12, 2.0],
     )
     self.encoder = encoder
     self.pool = SelectAdaptivePool2d(pool_type="catavgmax", flatten=True)
     self.type_classifier = WeightNormClassifier(encoder.num_features * 2,
                                                 num_classes,
                                                 128,
                                                 dropout=dropout)
     self.flag_classifier = WeightNormClassifier(encoder.num_features * 2,
                                                 1,
                                                 128,
                                                 dropout=dropout)
Esempio n. 4
0
    def __init__(self, model_name, pretrained, input_channels, pool_type,
                 num_classes, out_features, drop_rate, drop_connect_rate):
        super(EfficientNet, self).__init__()

        backbone = timm.create_model(model_name=model_name,
                                     pretrained=pretrained,
                                     in_chans=input_channels,
                                     drop_connect_rate=drop_connect_rate)

        stem_modules = [('conv_stem', backbone.conv_stem),
                        ('bn1', backbone.bn1), ('act1', backbone.act1)]
        self.stem = nn.Sequential(OrderedDict(stem_modules))

        current_stride = backbone.conv_stem.stride[0]
        self._out_feature_strides = {"stem": current_stride}
        self._out_feature_channels = {"stem": backbone.bn1.num_features}

        self.blocks_and_names = []
        for i in range(7):
            block = backbone.blocks[i]
            name = f"block{i}"
            self.add_module(name, block)
            self.blocks_and_names.append((block, name))
            self._out_feature_strides[name] = current_stride = int(
                current_stride * block[0].conv_dw.stride[0])
            if i == 0:
                self._out_feature_channels[name] = block[-1].bn2.num_features
            else:
                self._out_feature_channels[name] = block[-1].bn3.num_features

        head_modules = [('conv_head', backbone.conv_head),
                        ('bn2', backbone.bn2), ('act2', backbone.act2)]
        self.head = nn.Sequential(OrderedDict(head_modules))
        current_stride *= backbone.conv_head.stride[0]
        self._out_feature_strides["head"] = current_stride
        self._out_feature_channels["head"] = backbone.conv_head.out_channels

        if num_classes is not None:
            self.global_pool = SelectAdaptivePool2d(pool_type=pool_type)
            self.num_features = backbone.num_features * self.global_pool.feat_mult(
            )
            self.linear = nn.Linear(self.num_features, num_classes)

        del backbone
        self.drop_rate = drop_rate
        self.num_classes = num_classes
        self._out_features = out_features
 def __init__(
     self,
     encoder,
     num_classes,
     dropout=0,
     mean=[0.3914976, 0.44266784, 0.46043398],
     std=[0.17819773, 0.17319807, 0.18128773],
 ):
     super().__init__()
     self.encoder = encoder
     max_pixel_value = 255
     self.rgb_bn = Normalize(
         np.array(mean) * max_pixel_value,
         np.array(std) * max_pixel_value)
     self.pool = SelectAdaptivePool2d(pool_type="catavgmax", flatten=True)
     self.type_classifier = WeightNormClassifier(encoder.num_features * 2,
                                                 num_classes,
                                                 128,
                                                 dropout=dropout)
     self.flag_classifier = WeightNormClassifier(encoder.num_features * 2,
                                                 1,
                                                 128,
                                                 dropout=dropout)
Esempio n. 6
0
    def __init__(self, in_channels):
        super(ClassifierConv, self).__init__()

        self.sconv0 = SeparableConvBnAct(in_channels,
                                         in_channels // 4,
                                         act_layer=nn.ReLU)
        self.pool0 = nn.MaxPool2d(kernel_size=3, stride=1)
        self.dropout = nn.Dropout2d(p=0.4)

        self.sconv1 = SeparableConvBnAct(in_channels // 4,
                                         in_channels // 6,
                                         act_layer=nn.ReLU)
        self.pool1 = nn.MaxPool2d(kernel_size=3, stride=1)

        self.se0 = SEModule((in_channels // 6))

        self.sconv2 = SeparableConvBnAct(in_channels // 6,
                                         in_channels // 8,
                                         act_layer=nn.ReLU)
        # self.pool2 = nn.MaxPool2d(kernel_size=3, stride=1)

        self.sconv3 = SeparableConvBnAct(in_channels // 8,
                                         in_channels // 8,
                                         act_layer=nn.ReLU)
        self.sconv4 = SeparableConvBnAct(in_channels // 8,
                                         in_channels // 16,
                                         act_layer=nn.ReLU)
        self.se1 = SEModule((in_channels // 16))
        self.sconv5 = SeparableConvBnAct(in_channels // 16,
                                         in_channels // 32,
                                         act_layer=nn.ReLU)

        self.global_pool = SelectAdaptivePool2d(pool_type="avg")

        self.relu = nn.ReLU(inplace=True)
        self.linear = nn.Linear((in_channels // 32), 1)
Esempio n. 7
0
    def __init__(self,
                 levels,
                 channels,
                 num_classes=1000,
                 in_chans=3,
                 cardinality=1,
                 base_width=64,
                 block=DlaBottle2neck,
                 residual_root=False,
                 linear_root=False,
                 batch_norm=FrozenBatchNorm2d,
                 drop_rate=0.0,
                 global_pool='avg',
                 feature_only=True,
                 dcn_config=(False, )):
        super(DLA, self).__init__()
        self.channels = channels
        self.num_classes = num_classes
        self.cardinality = cardinality
        self.base_width = base_width
        self.drop_rate = drop_rate

        # check whether deformable conv config is right
        if len(dcn_config) != 6:
            raise ValueError("Deformable configuration is not correct, "
                             "every level should specifcy a configuration.")

        self.base_layer = nn.Sequential(
            Conv2d(in_chans,
                   channels[0],
                   kernel_size=7,
                   stride=1,
                   padding=3,
                   bias=False), batch_norm(channels[0]), nn.ReLU(inplace=True))
        self.level0 = self._make_conv_level(channels[0],
                                            channels[0],
                                            levels[0],
                                            batch_norm=batch_norm)
        self.level1 = self._make_conv_level(channels[0],
                                            channels[1],
                                            levels[1],
                                            stride=2,
                                            batch_norm=batch_norm)
        cargs = dict(cardinality=cardinality,
                     base_width=base_width,
                     root_residual=residual_root,
                     batch_norm=batch_norm)
        self.level2 = DlaTree(levels[2],
                              block,
                              channels[1],
                              channels[2],
                              2,
                              level_root=False,
                              with_dcn=dcn_config[2],
                              **cargs)
        self.level3 = DlaTree(levels[3],
                              block,
                              channels[2],
                              channels[3],
                              2,
                              level_root=True,
                              with_dcn=dcn_config[3],
                              **cargs)
        self.level4 = DlaTree(levels[4],
                              block,
                              channels[3],
                              channels[4],
                              2,
                              level_root=True,
                              with_dcn=dcn_config[4],
                              **cargs)
        self.level5 = DlaTree(levels[5],
                              block,
                              channels[4],
                              channels[5],
                              2,
                              level_root=True,
                              with_dcn=dcn_config[5],
                              **cargs)

        if not feature_only:
            self.num_features = channels[-1]
            self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
            self.fc = nn.Conv2d(self.num_features *
                                self.global_pool.feat_mult(),
                                num_classes,
                                1,
                                bias=True)
Esempio n. 8
0
    def __init__(self, model_name, num_classes, aux=False):
        super(TIMMetricLearningMModels, self).__init__()
        self.model = create_model(
            model_name=model_name,
            pretrained=True,
            num_classes=num_classes,
            in_chans=3,
        )

        # Deep-supervised learning
        self.aux = aux
        if self.aux:
            self.num_p2_features = self.model.layer2[-1].bn2.num_features
            self.num_p3_features = self.model.layer3[-1].bn2.num_features

            self.ds1 = nn.Sequential(
                # Fire(self.num_p2_features, 16, 64, 64),
                # Fire(128, 16, 64, 64),
                # Fire(128, 32, 128, 128),
                # nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                # Fire(256, 32, 128, 128),
                # Fire(256, 48, 192, 192),
                # Fire(384, 48, 192, 192),
                # Fire(384, 64, 256, 256),
                # nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                # Fire(512, 64, 256, 256),
                nn.Conv2d(self.num_p2_features,
                          self.num_p2_features * 4,
                          kernel_size=(1, 1),
                          stride=(1, 1),
                          bias=False),
                nn.BatchNorm2d(self.num_p2_features * 4),
                Swish(),
                SelectAdaptivePool2d(),
                Flatten(),
                nn.Linear(self.num_p2_features * 4, num_classes))

            self.ds2 = nn.Sequential(
                # Fire(self.num_p3_features, 16, 64, 64),
                # Fire(128, 16, 64, 64),
                # Fire(128, 32, 128, 128),
                # nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                # Fire(256, 32, 128, 128),
                # Fire(256, 48, 192, 192),
                # Fire(384, 48, 192, 192),
                # Fire(384, 64, 256, 256),
                # nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                # Fire(512, 64, 256, 256),
                nn.Conv2d(self.num_p3_features,
                          self.num_p3_features * 4,
                          kernel_size=(1, 1),
                          stride=(1, 1),
                          bias=False),
                nn.BatchNorm2d(self.num_p3_features * 4),
                Swish(),
                SelectAdaptivePool2d(),
                Flatten(),
                nn.Linear(self.num_p3_features * 4, num_classes))

        # Arcface
        features_num = self.model.num_features
        embedding_size = 512

        self.neck = nn.Sequential(
            nn.BatchNorm1d(features_num),
            nn.Linear(features_num, embedding_size, bias=False),
            nn.ReLU(inplace=True),
            nn.BatchNorm1d(embedding_size),
            nn.Linear(embedding_size, embedding_size, bias=False),
            nn.BatchNorm1d(embedding_size),
        )
        self.arc_margin_product = ArcMarginProduct(embedding_size, num_classes)
        self.arc_loss = ArcFaceLoss()
        self.head_arcface = nn.Linear(embedding_size, num_classes)
Esempio n. 9
0
 def reset_classifier(self, num_classes, global_pool='avg'):
     self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
     self.num_classes = num_classes
     self.classifier = nn.Linear(
         self.num_features * self.global_pool.feat_mult(),
         num_classes) if self.num_classes else None
Esempio n. 10
0
    def __init__(self,
                 block_args,
                 choices,
                 num_classes=1000,
                 in_chans=3,
                 stem_size=16,
                 num_features=1280,
                 head_bias=True,
                 channel_multiplier=1.0,
                 pad_type='',
                 act_layer=nn.ReLU,
                 drop_rate=0.,
                 drop_path_rate=0.,
                 slice=4,
                 se_kwargs=None,
                 norm_layer=nn.BatchNorm2d,
                 logger=None,
                 norm_kwargs=None,
                 global_pool='avg',
                 resunit=False,
                 dil_conv=False,
                 verbose=False):
        super(SuperNet, self).__init__()

        self.num_classes = num_classes
        self.num_features = num_features
        self.drop_rate = drop_rate
        self._in_chs = in_chans
        self.logger = logger

        # Stem
        stem_size = round_channels(stem_size, channel_multiplier)
        self.conv_stem = create_conv2d(self._in_chs,
                                       stem_size,
                                       3,
                                       stride=2,
                                       padding=pad_type)
        self.bn1 = norm_layer(stem_size, **norm_kwargs)
        self.act1 = act_layer(inplace=True)
        self._in_chs = stem_size

        # Middle stages (IR/ER/DS Blocks)
        builder = SuperNetBuilder(choices,
                                  channel_multiplier,
                                  8,
                                  None,
                                  32,
                                  pad_type,
                                  act_layer,
                                  se_kwargs,
                                  norm_layer,
                                  norm_kwargs,
                                  drop_path_rate,
                                  verbose=verbose,
                                  resunit=resunit,
                                  dil_conv=dil_conv,
                                  logger=self.logger)
        self.blocks = builder(self._in_chs, block_args)
        self._in_chs = builder.in_chs

        # Head + Pooling
        self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
        self.conv_head = create_conv2d(self._in_chs,
                                       self.num_features,
                                       1,
                                       padding=pad_type,
                                       bias=head_bias)
        self.act2 = act_layer(inplace=True)

        # Classifier
        self.classifier = nn.Linear(
            self.num_features * self.global_pool.feat_mult(), self.num_classes)

        self.meta_layer = nn.Linear(self.num_classes * slice, 1)
        efficientnet_init_weights(self)
Esempio n. 11
0
    def __init__(self, block, layers, num_classes=1000, in_chans=3,
                 cardinality=1, base_width=64, stem_width=64, stem_type='',
                 block_reduce_first=1, down_kernel_size=1, avg_down=False, output_stride=32,
                 act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, drop_rate=0.0, drop_path_rate=0.,
                 drop_block_rate=0., global_pool='avg', zero_init_last_bn=True, block_args=None):
        block_args = block_args or dict()
        self.num_classes = num_classes
        deep_stem = 'deep' in stem_type
        self.inplanes = stem_width * 2 if deep_stem else 64
        self.cardinality = cardinality
        self.base_width = base_width
        self.drop_rate = drop_rate
        self.expansion = block.expansion
        super(ResNet, self).__init__()

        # Stem
        if deep_stem:
            stem_chs_1 = stem_chs_2 = stem_width
            if 'tiered' in stem_type:
                stem_chs_1 = 3 * (stem_width // 4)
                stem_chs_2 = stem_width if 'narrow' in stem_type else 6 * (stem_width // 4)
            self.conv1 = nn.Sequential(*[
                nn.Conv2d(in_chans, stem_chs_1, 3, stride=2, padding=1, bias=False),
                norm_layer(stem_chs_1),
                act_layer(inplace=True),
                nn.Conv2d(stem_chs_1, stem_chs_2, 3, stride=1, padding=1, bias=False),
                norm_layer(stem_chs_2),
                act_layer(inplace=True),
                nn.Conv2d(stem_chs_2, self.inplanes, 3, stride=1, padding=1, bias=False)])
        else:
            self.conv1 = nn.Conv2d(in_chans, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.act1 = act_layer(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        # Feature Blocks
        dp = DropPath(drop_path_rate) if drop_path_rate else None
        db_3 = DropBlock2d(drop_block_rate, 7, 0.25) if drop_block_rate else None
        db_4 = DropBlock2d(drop_block_rate, 7, 1.00) if drop_block_rate else None
        channels, strides, dilations = [64, 128, 256, 512], [1, 2, 2, 2], [1] * 4
        if output_stride == 16:
            strides[3] = 1
            dilations[3] = 2
        elif output_stride == 8:
            strides[2:4] = [1, 1]
            dilations[2:4] = [2, 4]
        else:
            assert output_stride == 32
        layer_args = list(zip(channels, layers, strides, dilations))
        layer_kwargs = dict(
            reduce_first=block_reduce_first, act_layer=act_layer, norm_layer=norm_layer,
            avg_down=avg_down, down_kernel_size=down_kernel_size, drop_path=dp, **block_args)
        self.layer1 = self._make_layer(block, *layer_args[0], **layer_kwargs)
        self.layer2 = self._make_layer(block, *layer_args[1], **layer_kwargs)
        self.layer3 = self._make_layer(block, drop_block=db_3, *layer_args[2], **layer_kwargs)
        self.layer4 = self._make_layer(block, drop_block=db_4, *layer_args[3], **layer_kwargs)

        # Head (Pooling and Classifier)
        self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
        self.num_features = 512 * block.expansion
        self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)

        for n, m in self.named_modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1.)
                nn.init.constant_(m.bias, 0.)
        if zero_init_last_bn:
            for m in self.modules():
                if hasattr(m, 'zero_init_last_bn'):
                    m.zero_init_last_bn()