def test_sum_grad(): x = tf.placeholder(tf.float32) ax = np.ones((2, 3)) z = -tf.reduce_sum(x) * 14 gx = tf.gradients(z, [x])[0] sess = tf.Session() agx = sess.run(gx, feed_dict={x: ax}) np.testing.assert_almost_equal(agx, -np.ones((2, 3)) * 14)
def test_sum_grad(): x = tf.placeholder(tf.float32) ax = np.ones((2, 3)) z = -tf.reduce_sum(x) * 14 gx = tf.gradients(z, [x])[0] sess = tf.Session() agx = sess.run(gx, feed_dict={x:ax}) np.testing.assert_almost_equal(agx, -np.ones((2,3)) * 14)
def test_sum(): axis = [1, 3] x = tf.placeholder(tf.float32) y = tf.reduce_sum(x, reduction_indices=axis) ax = np.random.uniform(size=(2, 4, 8, 7)) sess = tf.Session() ay = sess.run(y, feed_dict={x:ax}) npy = ax.sum(axis=tuple(axis)) assert(np.mean(np.abs(ay - npy))) < 1e-6
"""Tinyflow example code. Minimum softmax code that exposes the optimizer. """ import tinyflow as tf from tinyflow.datasets import get_mnist # Create the model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) y = tf.nn.softmax(tf.matmul(x, W)) # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 10]) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) learning_rate = 0.5 W_grad = tf.gradients(cross_entropy, [W])[0] train_step = tf.assign(W, W - learning_rate * W_grad) sess = tf.Session() sess.run(tf.initialize_all_variables()) # get the mnist dataset mnist = get_mnist(flatten=True, onehot=True) for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
This code is adapted from Tensorflow's MNIST Tutorial with minimum code changes. """ import tinyflow as tf from tinyflow.datasets import get_mnist # Create the model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) y = tf.nn.softmax(tf.matmul(x, W)) # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 10]) cross_entropy = tf.reduce_mean( -tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.Session() sess.run(tf.initialize_all_variables()) # get the mnist dataset mnist = get_mnist(flatten=True, onehot=True) print("minist download is completed!") for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
"""MNIST softmax completely in tinyflow.""" import tinyflow as tf from tinyflow.datasets import get_mnist # Create the model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) y = tf.nn.softmax(tf.matmul(x, W)) # Define loss y_ = tf.placeholder(tf.float32, [None, 10]) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) # Take gradient W_grad = tf.gradients(cross_entropy, [W])[0] # The update rule. learning_rate = 0.5 train_step = tf.assign(W, W - learning_rate * W_grad) sess = tf.Session() sess.run(tf.initialize_all_variables()) # get the mnist dataset mnist = get_mnist(flatten=True, onehot=True) for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys}) correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(correct_prediction)