Esempio n. 1
0
 def __add__(self, other):
     if isinstance(other, Tuple):
         return Tuple(merge(self._dask, other._dask),
                      self._keys + other._keys)
     return NotImplemented
Esempio n. 2
0
def from_delayed(dfs,
                 meta=None,
                 divisions=None,
                 prefix="from-delayed",
                 verify_meta=True):
    """ Create Dask DataFrame from many Dask Delayed objects

    Parameters
    ----------
    dfs : list of Delayed
        An iterable of ``dask.delayed.Delayed`` objects, such as come from
        ``dask.delayed`` These comprise the individual partitions of the
        resulting dataframe.
    $META
    divisions : tuple, str, optional
        Partition boundaries along the index.
        For tuple, see https://docs.dask.org/en/latest/dataframe-design.html#partitions
        For string 'sorted' will compute the delayed values to find index
        values.  Assumes that the indexes are mutually sorted.
        If None, then won't use index information
    prefix : str, optional
        Prefix to prepend to the keys.
    verify_meta : bool, optional
        If True check that the partitions have consistent metadata, defaults to True.
    """
    from dask.delayed import Delayed

    if isinstance(dfs, Delayed):
        dfs = [dfs]
    dfs = [
        delayed(df)
        if not isinstance(df, Delayed) and hasattr(df, "key") else df
        for df in dfs
    ]
    for df in dfs:
        if not isinstance(df, Delayed):
            raise TypeError("Expected Delayed object, got %s" %
                            type(df).__name__)

    if meta is None:
        meta = delayed(make_meta)(dfs[0]).compute()
    else:
        meta = make_meta(meta)

    name = prefix + "-" + tokenize(*dfs)
    dsk = merge(df.dask for df in dfs)
    if verify_meta:
        for (i, df) in enumerate(dfs):
            dsk[(name, i)] = (check_meta, df.key, meta, "from_delayed")
    else:
        for (i, df) in enumerate(dfs):
            dsk[(name, i)] = df.key

    if divisions is None or divisions == "sorted":
        divs = [None] * (len(dfs) + 1)
    else:
        divs = tuple(divisions)
        if len(divs) != len(dfs) + 1:
            raise ValueError("divisions should be a tuple of len(dfs) + 1")

    df = new_dd_object(dsk, name, meta, divs)

    if divisions == "sorted":
        from ..shuffle import compute_and_set_divisions

        df = compute_and_set_divisions(df)

    return df
Esempio n. 3
0
def start_worker(
    logdir,
    scheduler_addr,
    scheduler_port,
    worker_addr,
    nthreads,
    nprocs,
    ssh_username,
    ssh_port,
    ssh_private_key,
    nohost,
    memory_limit,
    worker_port,
    nanny_port,
    remote_python=None,
    remote_dask_worker="distributed.cli.dask_worker",
    local_directory=None,
):

    cmd = ("{python} -m {remote_dask_worker} "
           "{scheduler_addr}:{scheduler_port} "
           "--nthreads {nthreads}" +
           (" --nprocs {nprocs}" if nprocs != 1 else ""))

    if not nohost:
        cmd += " --host {worker_addr}"

    if memory_limit:
        cmd += " --memory-limit {memory_limit}"

    if worker_port:
        cmd += " --worker-port {worker_port}"

    if nanny_port:
        cmd += " --nanny-port {nanny_port}"

    cmd = cmd.format(
        python=remote_python or sys.executable,
        remote_dask_worker=remote_dask_worker,
        scheduler_addr=scheduler_addr,
        scheduler_port=scheduler_port,
        worker_addr=worker_addr,
        nthreads=nthreads,
        nprocs=nprocs,
        memory_limit=memory_limit,
        worker_port=worker_port,
        nanny_port=nanny_port,
    )

    if local_directory is not None:
        cmd += " --local-directory {local_directory}".format(
            local_directory=local_directory)

    # Optionally redirect stdout and stderr to a logfile
    if logdir is not None:
        cmd = "mkdir -p {logdir} && ".format(logdir=logdir) + cmd
        cmd += "&> {logdir}/dask_scheduler_{addr}.log".format(addr=worker_addr,
                                                              logdir=logdir)

    label = "worker {addr}".format(addr=worker_addr)

    # Create a command dictionary, which contains everything we need to run and
    # interact with this command.
    input_queue = Queue()
    output_queue = Queue()
    cmd_dict = {
        "cmd": cmd,
        "label": label,
        "address": worker_addr,
        "input_queue": input_queue,
        "output_queue": output_queue,
        "ssh_username": ssh_username,
        "ssh_port": ssh_port,
        "ssh_private_key": ssh_private_key,
    }

    # Start the thread
    thread = Thread(target=async_ssh, args=[cmd_dict])
    thread.daemon = True
    thread.start()

    return merge(cmd_dict, {"thread": thread})
Esempio n. 4
0
def from_dask_array(x, columns=None, index=None):
    """ Create a Dask DataFrame from a Dask Array.

    Converts a 2d array into a DataFrame and a 1d array into a Series.

    Parameters
    ----------
    x : da.Array
    columns : list or string
        list of column names if DataFrame, single string if Series
    index : dask.dataframe.Index, optional
        An optional *dask* Index to use for the output Series or DataFrame.

        The default output index depends on whether `x` has any unknown
        chunks. If there are any unknown chunks, the output has ``None``
        for all the divisions (one per chunk). If all the chunks are known,
        a default index with known divsions is created.

        Specifying `index` can be useful if you're conforming a Dask Array
        to an existing dask Series or DataFrame, and you would like the
        indices to match.

    Examples
    --------
    >>> import dask.array as da
    >>> import dask.dataframe as dd
    >>> x = da.ones((4, 2), chunks=(2, 2))
    >>> df = dd.io.from_dask_array(x, columns=['a', 'b'])
    >>> df.compute()
         a    b
    0  1.0  1.0
    1  1.0  1.0
    2  1.0  1.0
    3  1.0  1.0

    See Also
    --------
    dask.bag.to_dataframe: from dask.bag
    dask.dataframe._Frame.values: Reverse conversion
    dask.dataframe._Frame.to_records: Reverse conversion
    """
    meta = _meta_from_array(x, columns, index)

    if x.ndim == 2 and len(x.chunks[1]) > 1:
        x = x.rechunk({1: x.shape[1]})

    name = "from-dask-array" + tokenize(x, columns)
    to_merge = []

    if index is not None:
        if not isinstance(index, Index):
            raise ValueError(
                "'index' must be an instance of dask.dataframe.Index")
        if index.npartitions != x.numblocks[0]:
            msg = ("The index and array have different numbers of blocks. "
                   "({} != {})".format(index.npartitions, x.numblocks[0]))
            raise ValueError(msg)
        divisions = index.divisions
        to_merge.append(ensure_dict(index.dask))
        index = index.__dask_keys__()

    elif np.isnan(sum(x.shape)):
        divisions = [None] * (len(x.chunks[0]) + 1)
        index = [None] * len(x.chunks[0])
    else:
        divisions = [0]
        for c in x.chunks[0]:
            divisions.append(divisions[-1] + c)
        index = [(np.arange, a, b, 1, "i8")
                 for a, b in zip(divisions[:-1], divisions[1:])]
        divisions[-1] -= 1

    dsk = {}
    for i, (chunk, ind) in enumerate(zip(x.__dask_keys__(), index)):
        if x.ndim == 2:
            chunk = chunk[0]
        if isinstance(meta, pd.Series):
            dsk[name, i] = (pd.Series, chunk, ind, x.dtype, meta.name)
        else:
            dsk[name, i] = (pd.DataFrame, chunk, ind, meta.columns)

    to_merge.extend([ensure_dict(x.dask), dsk])
    return new_dd_object(merge(*to_merge), name, meta, divisions)
Esempio n. 5
0
def gen_cluster(
    nthreads=[("127.0.0.1", 1), ("127.0.0.1", 2)],
    ncores=None,
    scheduler="127.0.0.1",
    timeout=10,
    security=None,
    Worker=Worker,
    client=False,
    scheduler_kwargs={},
    worker_kwargs={},
    client_kwargs={},
    active_rpc_timeout=1,
    config={},
    clean_kwargs={},
    allow_unclosed=False,
):
    from distributed import Client
    """ Coroutine test with small cluster

    @gen_cluster()
    async def test_foo(scheduler, worker1, worker2):
        await ...  # use tornado coroutines

    See also:
        start
        end
    """
    if ncores is not None:
        warnings.warn("ncores= has moved to nthreads=", stacklevel=2)
        nthreads = ncores

    worker_kwargs = merge(
        {
            "memory_limit": system.MEMORY_LIMIT,
            "death_timeout": 10
        }, worker_kwargs)

    def _(func):
        if not iscoroutinefunction(func):
            func = gen.coroutine(func)

        def test_func():
            result = None
            workers = []
            with clean(timeout=active_rpc_timeout, **clean_kwargs) as loop:

                async def coro():
                    with dask.config.set(config):
                        s = False
                        for i in range(5):
                            try:
                                s, ws = await start_cluster(
                                    nthreads,
                                    scheduler,
                                    loop,
                                    security=security,
                                    Worker=Worker,
                                    scheduler_kwargs=scheduler_kwargs,
                                    worker_kwargs=worker_kwargs,
                                )
                            except Exception as e:
                                logger.error(
                                    "Failed to start gen_cluster, retrying",
                                    exc_info=True,
                                )
                                await asyncio.sleep(1)
                            else:
                                workers[:] = ws
                                args = [s] + workers
                                break
                        if s is False:
                            raise Exception("Could not start cluster")
                        if client:
                            c = await Client(
                                s.address,
                                loop=loop,
                                security=security,
                                asynchronous=True,
                                **client_kwargs,
                            )
                            args = [c] + args
                        try:
                            future = func(*args)
                            if timeout:
                                future = asyncio.wait_for(future, timeout)
                            result = await future
                            if s.validate:
                                s.validate_state()
                        finally:
                            if client and c.status not in ("closing",
                                                           "closed"):
                                await c._close(fast=s.status == Status.closed)
                            await end_cluster(s, workers)
                            await asyncio.wait_for(cleanup_global_workers(), 1)

                        try:
                            c = await default_client()
                        except ValueError:
                            pass
                        else:
                            await c._close(fast=True)

                        def get_unclosed():
                            return [
                                c for c in Comm._instances if not c.closed()
                            ] + [
                                c for c in _global_clients.values()
                                if c.status != "closed"
                            ]

                        try:
                            start = time()
                            while time() < start + 5:
                                gc.collect()
                                if not get_unclosed():
                                    break
                                await asyncio.sleep(0.05)
                            else:
                                if allow_unclosed:
                                    print(f"Unclosed Comms: {get_unclosed()}")
                                else:
                                    raise RuntimeError("Unclosed Comms",
                                                       get_unclosed())
                        finally:
                            Comm._instances.clear()
                            _global_clients.clear()

                        return result

                result = loop.run_sync(coro,
                                       timeout=timeout *
                                       2 if timeout else timeout)

            for w in workers:
                if getattr(w, "data", None):
                    try:
                        w.data.clear()
                    except EnvironmentError:
                        # zict backends can fail if their storage directory
                        # was already removed
                        pass
                    del w.data

            return result

        return test_func

    return _
Esempio n. 6
0
def cluster(
    nworkers=2,
    nanny=False,
    worker_kwargs={},
    active_rpc_timeout=1,
    disconnect_timeout=3,
    scheduler_kwargs={},
):
    ws = weakref.WeakSet()
    enable_proctitle_on_children()

    with clean(timeout=active_rpc_timeout, threads=False) as loop:
        if nanny:
            _run_worker = run_nanny
        else:
            _run_worker = run_worker

        # The scheduler queue will receive the scheduler's address
        scheduler_q = mp_context.Queue()

        # Launch scheduler
        scheduler = mp_context.Process(
            name="Dask cluster test: Scheduler",
            target=run_scheduler,
            args=(scheduler_q, nworkers + 1),
            kwargs=scheduler_kwargs,
        )
        ws.add(scheduler)
        scheduler.daemon = True
        scheduler.start()

        # Launch workers
        workers = []
        for i in range(nworkers):
            q = mp_context.Queue()
            fn = "_test_worker-%s" % uuid.uuid4()
            kwargs = merge(
                {
                    "nthreads": 1,
                    "local_directory": fn,
                    "memory_limit": system.MEMORY_LIMIT,
                },
                worker_kwargs,
            )
            proc = mp_context.Process(
                name="Dask cluster test: Worker",
                target=_run_worker,
                args=(q, scheduler_q),
                kwargs=kwargs,
            )
            ws.add(proc)
            workers.append({"proc": proc, "queue": q, "dir": fn})

        for worker in workers:
            worker["proc"].start()
        try:
            for worker in workers:
                worker["address"] = worker["queue"].get(timeout=5)
        except queue.Empty:
            raise pytest.xfail.Exception("Worker failed to start in test")

        saddr = scheduler_q.get()

        start = time()
        try:
            try:
                security = scheduler_kwargs["security"]
                rpc_kwargs = {
                    "connection_args": security.get_connection_args("client")
                }
            except KeyError:
                rpc_kwargs = {}

            with rpc(saddr, **rpc_kwargs) as s:
                while True:
                    nthreads = loop.run_sync(s.ncores)
                    if len(nthreads) == nworkers:
                        break
                    if time() - start > 5:
                        raise Exception("Timeout on cluster creation")

            # avoid sending processes down to function
            yield {
                "address": saddr
            }, [{
                "address": w["address"],
                "proc": weakref.ref(w["proc"])
            } for w in workers]
        finally:
            logger.debug("Closing out test cluster")

            loop.run_sync(lambda: disconnect_all(
                [w["address"] for w in workers],
                timeout=disconnect_timeout,
                rpc_kwargs=rpc_kwargs,
            ))
            loop.run_sync(lambda: disconnect(
                saddr, timeout=disconnect_timeout, rpc_kwargs=rpc_kwargs))

            scheduler.terminate()
            scheduler_q.close()
            scheduler_q._reader.close()
            scheduler_q._writer.close()

            for w in workers:
                w["proc"].terminate()
                w["queue"].close()
                w["queue"]._reader.close()
                w["queue"]._writer.close()

            scheduler.join(2)
            del scheduler
            for proc in [w["proc"] for w in workers]:
                proc.join(timeout=2)

            with suppress(UnboundLocalError):
                del worker, w, proc
            del workers[:]

            for fn in glob("_test_worker-*"):
                with suppress(OSError):
                    shutil.rmtree(fn)

        try:
            client = default_client()
        except ValueError:
            pass
        else:
            client.close()

    start = time()
    while any(proc.is_alive() for proc in ws):
        text = str(list(ws))
        sleep(0.2)
        assert time() < start + 5, ("Workers still around after five seconds",
                                    text)
Esempio n. 7
0
def to_parquet(
    df,
    path,
    engine="auto",
    compression="default",
    write_index=True,
    append=False,
    overwrite=False,
    ignore_divisions=False,
    partition_on=None,
    storage_options=None,
    write_metadata_file=True,
    compute=True,
    compute_kwargs=None,
    schema=None,
    **kwargs,
):
    """Store Dask.dataframe to Parquet files

    Notes
    -----
    Each partition will be written to a separate file.

    Parameters
    ----------
    df : dask.dataframe.DataFrame
    path : string or pathlib.Path
        Destination directory for data.  Prepend with protocol like ``s3://``
        or ``hdfs://`` for remote data.
    engine : {'auto', 'fastparquet', 'pyarrow'}, default 'auto'
        Parquet library to use. If only one library is installed, it will use
        that one; if both, it will use 'fastparquet'.
    compression : string or dict, optional
        Either a string like ``"snappy"`` or a dictionary mapping column names
        to compressors like ``{"name": "gzip", "values": "snappy"}``. The
        default is ``"default"``, which uses the default compression for
        whichever engine is selected.
    write_index : boolean, optional
        Whether or not to write the index. Defaults to True.
    append : bool, optional
        If False (default), construct data-set from scratch. If True, add new
        row-group(s) to an existing data-set. In the latter case, the data-set
        must exist, and the schema must match the input data.
    overwrite : bool, optional
        Whether or not to remove the contents of `path` before writing the dataset.
        The default is False.  If True, the specified path must correspond to
        a directory (but not the current working directory).  This option cannot
        be set to True if `append=True`.
        NOTE: `overwrite=True` will remove the original data even if the current
        write operation fails.  Use at your own risk.
    ignore_divisions : bool, optional
        If False (default) raises error when previous divisions overlap with
        the new appended divisions. Ignored if append=False.
    partition_on : list, optional
        Construct directory-based partitioning by splitting on these fields'
        values. Each dask partition will result in one or more datafiles,
        there will be no global groupby.
    storage_options : dict, optional
        Key/value pairs to be passed on to the file-system backend, if any.
    write_metadata_file : bool, optional
        Whether to write the special "_metadata" file.
    compute : bool, optional
        If True (default) then the result is computed immediately. If False
        then a ``dask.delayed`` object is returned for future computation.
    compute_kwargs : dict, optional
        Options to be passed in to the compute method
    schema : Schema object, dict, or {"infer", None}, optional
        Global schema to use for the output dataset. Alternatively, a `dict`
        of pyarrow types can be specified (e.g. `schema={"id": pa.string()}`).
        For this case, fields excluded from the dictionary will be inferred
        from `_meta_nonempty`.  If "infer", the first non-empty and non-null
        partition will be used to infer the type for "object" columns. If
        None (default), we let the backend infer the schema for each distinct
        output partition. If the partitions produce inconsistent schemas,
        pyarrow will throw an error when writing the shared _metadata file.
        Note that this argument is ignored by the "fastparquet" engine.
    **kwargs :
        Extra options to be passed on to the specific backend.

    Examples
    --------
    >>> df = dd.read_csv(...)  # doctest: +SKIP
    >>> dd.to_parquet(df, '/path/to/output/',...)  # doctest: +SKIP

    See Also
    --------
    read_parquet: Read parquet data to dask.dataframe
    """

    if compression == "default":
        if snappy is not None:
            compression = "snappy"
        else:
            compression = None

    partition_on = partition_on or []
    if isinstance(partition_on, str):
        partition_on = [partition_on]

    if set(partition_on) - set(df.columns):
        raise ValueError("Partitioning on non-existent column. "
                         "partition_on=%s ."
                         "columns=%s" %
                         (str(partition_on), str(list(df.columns))))

    if isinstance(engine, str):
        engine = get_engine(engine)

    if hasattr(path, "name"):
        path = stringify_path(path)
    fs, _, _ = get_fs_token_paths(path,
                                  mode="wb",
                                  storage_options=storage_options)
    # Trim any protocol information from the path before forwarding
    path = fs._strip_protocol(path)

    if overwrite:
        if isinstance(fs, LocalFileSystem):
            working_dir = fs.expand_path(".")[0]
            if path == working_dir:
                raise ValueError(
                    "Cannot clear the contents of the current working directory!"
                )
        if append:
            raise ValueError(
                "Cannot use both `overwrite=True` and `append=True`!")
        if fs.isdir(path):
            # Only remove path contents if
            # (1) The path exists
            # (2) The path is a directory
            # (3) The path is not the current working directory
            fs.rm(path, recursive=True)

    # Save divisions and corresponding index name. This is necessary,
    # because we may be resetting the index to write the file
    division_info = {"divisions": df.divisions, "name": df.index.name}
    if division_info["name"] is None:
        # As of 0.24.2, pandas will rename an index with name=None
        # when df.reset_index() is called.  The default name is "index",
        # but dask will always change the name to the NONE_LABEL constant
        if NONE_LABEL not in df.columns:
            division_info["name"] = NONE_LABEL
        elif write_index:
            raise ValueError(
                "Index must have a name if __null_dask_index__ is a column.")
        else:
            warnings.warn(
                "If read back by Dask, column named __null_dask_index__ "
                "will be set to the index (and renamed to None).")

    # There are some "resrved" names that may be used as the default column
    # name after resetting the index. However, we don't want to treat it as
    # a "special" name if the string is already used as a "real" column name.
    reserved_names = []
    for name in ["index", "level_0"]:
        if name not in df.columns:
            reserved_names.append(name)

    # If write_index==True (default), reset the index and record the
    # name of the original index in `index_cols` (we will set the name
    # to the NONE_LABEL constant if it is originally `None`).
    # `fastparquet` will use `index_cols` to specify the index column(s)
    # in the metadata.  `pyarrow` will revert the `reset_index` call
    # below if `index_cols` is populated (because pyarrow will want to handle
    # index preservation itself).  For both engines, the column index
    # will be written to "pandas metadata" if write_index=True
    index_cols = []
    if write_index:
        real_cols = set(df.columns)
        none_index = list(df._meta.index.names) == [None]
        df = df.reset_index()
        if none_index:
            df.columns = [
                c if c not in reserved_names else NONE_LABEL
                for c in df.columns
            ]
        index_cols = [c for c in set(df.columns) - real_cols]
    else:
        # Not writing index - might as well drop it
        df = df.reset_index(drop=True)

    _to_parquet_kwargs = {
        "engine",
        "compression",
        "write_index",
        "append",
        "ignore_divisions",
        "partition_on",
        "storage_options",
        "write_metadata_file",
        "compute",
    }
    kwargs_pass = {
        k: v
        for k, v in kwargs.items() if k not in _to_parquet_kwargs
    }

    # Engine-specific initialization steps to write the dataset.
    # Possibly create parquet metadata, and load existing stuff if appending
    meta, schema, i_offset = engine.initialize_write(
        df,
        fs,
        path,
        append=append,
        ignore_divisions=ignore_divisions,
        partition_on=partition_on,
        division_info=division_info,
        index_cols=index_cols,
        schema=schema,
        **kwargs_pass,
    )

    # Use i_offset and df.npartitions to define file-name list
    filenames = [
        "part.%i.parquet" % (i + i_offset) for i in range(df.npartitions)
    ]

    # Construct IO graph
    dsk = {}
    name = "to-parquet-" + tokenize(
        df,
        fs,
        path,
        append,
        ignore_divisions,
        partition_on,
        division_info,
        index_cols,
        schema,
    )
    part_tasks = []
    kwargs_pass["fmd"] = meta
    kwargs_pass["compression"] = compression
    kwargs_pass["index_cols"] = index_cols
    kwargs_pass["schema"] = schema
    for d, filename in enumerate(filenames):
        dsk[(name, d)] = (
            apply,
            engine.write_partition,
            [
                (df._name, d),
                path,
                fs,
                filename,
                partition_on,
                write_metadata_file,
            ],
            toolz.merge(kwargs_pass, {"head": True})
            if d == 0 else kwargs_pass,
        )
        part_tasks.append((name, d))

    # Collect metadata and write _metadata
    if write_metadata_file:
        dsk[name] = (
            apply,
            engine.write_metadata,
            [
                part_tasks,
                meta,
                fs,
                path,
            ],
            {
                "append": append,
                "compression": compression
            },
        )
    else:
        dsk[name] = (lambda x: None, part_tasks)

    graph = HighLevelGraph.from_collections(name, dsk, dependencies=[df])
    out = Delayed(name, graph)

    if compute:
        if compute_kwargs is None:
            compute_kwargs = dict()
        out = out.compute(**compute_kwargs)
    return out
Esempio n. 8
0
 def __add__(self, other):
     if not isinstance(other, Tuple):
         return NotImplemented  # pragma: nocover
     return Tuple(merge(self._dask, other._dask), self._keys + other._keys)