Esempio n. 1
0
 def fitness_calc(
     self, problem, src_models, target_model, sample_size, sub_sample_size
 ):  # You can implement this in a more optmized way using vectorizatioin but it will hurt modularity
     start = time()
     normalized_alpha = self.genes / np.sum(self.genes)
     mixModel = MixtureModel(src_models, alpha=normalized_alpha)
     mixModel.add_target_model(target_model)
     # mixModel.createTable(Chromosome.genes_to_numpy(pop), True, 'umd')
     # mixModel.EMstacking()
     # mixModel.mutate()
     print('sample start')
     offsprings = mixModel.sample(sample_size)
     print('sample end')
     print('selecting start')
     idx = np.random.randint(sample_size, size=sub_sample_size)
     offsprings = offsprings[idx]  # Creating sub_samples of samples
     print('selecting end')
     offsprings = np.array(
         [Chromosome(offspring) for offspring in offsprings])
     sfitness = np.zeros(sub_sample_size)
     print('fitness_calc start')
     for i in range(sub_sample_size):
         sfitness[i] = offsprings[i].fitness_calc(problem)
     print('fitness_calc end')
     self.fitness = np.mean(sfitness)
     self.fitness_calc_time = time() - start
     # best_offspring = np.max(offsprings)
     return self.fitness, offsprings
Esempio n. 2
0
    def fitness_calc_pole(self,
                          net,
                          cart,
                          s_len,
                          src_models,
                          target_model,
                          sample_size,
                          solution_found=None,
                          mutation_vec=None,
                          prev_samples=None,
                          efficient_version=False):

        start = time()
        if not efficient_version or (mutation_vec is None):
            normalized_alpha = self.genes / np.sum(self.genes)
        else:
            normalized_alpha = np.clip(mutation_vec, 0, None)
        mixModel = MixtureModel(src_models, alpha=normalized_alpha)
        mixModel.add_target_model(target_model)

        if efficient_version:
            pass
        else:
            offsprings = mixModel.sample(sample_size)
            # idx = np.random.randint(sample_size, size=sub_sample_size)
            # offsprings = offsprings[idx] # Creating sub_samples of samples
            # print('selecting end')
            offsprings = np.array(
                [ChromosomePole(offspring) for offspring in offsprings])

            func_eval_num = 0
            sfitness = np.zeros(sample_size)
            # print('fitness_calc start')
            for i in range(sample_size):
                sfitness[i] = offsprings[i].fitness_calc(net, cart, s_len)
                if not solution_found.value:
                    func_eval_num += 1
                if sfitness[i] - 2000 > -0.0001:
                    solution_found.value = True
            # print('fitness_calc end')
            self.fitness = np.mean(sfitness)
            # print('sample end')
            # print('selecting start')

            self.fitness_calc_time = time() - start
            # best_offspring = np.max(offsprings)
            return self.fitness, offsprings, func_eval_num
Esempio n. 3
0
    def fitness_calc_pole(self,
                          net,
                          cart,
                          s_len,
                          src_models,
                          target_model,
                          sample_size,
                          mutation_strength,
                          samples_count,
                          solution_found=None):

        start = time()

        if not all(self.genes == self.genes[0]):
            termination_mask = self.genes > (1 / (len(src_models) + 1) *
                                             0.01) * 1.0
            genes = termination_mask * self.genes

            genes = genes / np.sum(genes)
            print('genes after normalization: ', genes)
        else:
            genes = self.genes
            print('first iteration!? not neutralized')

        # Initializing the weights of the mixture model with
        mixModel = MixtureModel(src_models, alpha=genes)
        mixModel.add_target_model(target_model)

        offsprings, mutation_strength, samples_count, fitness_mean, eval_num = \
            mixModel.sample_enhanced(sample_size, cart, mutation_strength,
                                    samples_count, net=net, s_len=s_len, mutation=False,
                                    solution_found=solution_found, problem_type='pole')

        self.fitness = fitness_mean

        self.fitness_calc_time = time() - start
        print('self.fitness_calc_time (m): ', self.fitness_calc_time / 60)
        # best_offspring = np.max(offsprings)
        return self.fitness, offsprings, mutation_strength, samples_count, eval_num
Esempio n. 4
0
    def fitness_calc_enhanced(self,
                              problem,
                              src_models,
                              target_model,
                              sample_size,
                              mutation_strength,
                              samples_count,
                              max_sampling_num=None,
                              mutation=True,
                              problem_type='knapsack'):
        start = time()

        if (not all(self.genes == self.genes[0])):
            termination_mask = self.genes > (1 / (len(src_models) + 1) *
                                             0.01) * 1.0  # BUG
            genes = termination_mask * self.genes

            genes = genes / np.sum(genes)

        else:
            genes = self.genes
            print('first iteration!? not neutralized')

        # Initializing the weights of the mixture model with
        mixModel = MixtureModel(src_models, alpha=genes)
        mixModel.add_target_model(target_model)

        offsprings, mutation_strength, samples_count, fitness_mean = \
            mixModel.sample_enhanced(sample_size, problem, mutation_strength,
                                    samples_count, max_sampling_num, mutation=mutation,
                                    problem_type=problem_type)

        self.fitness = fitness_mean

        self.fitness_calc_time = time() - start

        return self.fitness, offsprings, mutation_strength, samples_count
Esempio n. 5
0
    def fitness_calc(
        self,
        problem,
        src_models,
        target_model,
        sample_size,
        sub_sample_size,
        mutation_vec=None,
        prev_samples=None,
        efficient_version=False
    ):  # You can implement this in a more optmized way using vectorizatioin but it will hurt modularity
        start = time()
        if not efficient_version or (mutation_vec is None):
            normalized_alpha = self.genes / np.sum(self.genes)
        else:
            normalized_alpha = np.clip(mutation_vec, 0, None)
        mixModel = MixtureModel(src_models, alpha=normalized_alpha)
        mixModel.add_target_model(target_model)
        # mixModel.createTable(Chromosome.genes_to_numpy(pop), True, 'umd')
        # mixModel.EMstacking()
        # mixModel.mutate()
        # print('sample start')
        if efficient_version:
            offsprings = mixModel.sample_dic(sample_size)
            flat_offsprings = np.array([])
            is_prev = (prev_samples is not None) and (mutation_vec is not None)
            if is_prev:
                # removing samples
                removing_samples = np.clip(
                    np.ceil(mutation_vec * sample_size).astype(int), None, 0)
                # print('Removing Samples: {}'.format(removing_samples))
                for i in range(len(removing_samples)):
                    if removing_samples[i] != 0:
                        r_num = len(prev_samples[i]) + removing_samples[i]
                        if r_num != 0:
                            prev_samples[i] = np.random.choice(prev_samples[i],
                                                               r_num,
                                                               replace=False)
                        else:
                            prev_samples[i] = None

                # adding sapmles
                for i in range(len(offsprings)):
                    if offsprings[i] is not None:
                        if prev_samples[i] is None:
                            prev_samples[i] = offsprings[i]
                        else:
                            offspring_add = [
                                Chromosome(offspring)
                                for offspring in offsprings[i]
                            ]
                            flat_offsprings = np.append(
                                flat_offsprings, offspring_add)
                            prev_samples[i] = np.append(prev_samples[i],
                                                        offspring_add,
                                                        axis=0)
                offsprings = prev_samples
            self.fitness = 0
            count = 0
            # fitness calc
            for i in range(len(offsprings)):
                if offsprings[i] is not None:
                    if not is_prev:
                        offspring_add = np.array([
                            Chromosome(offspring)
                            for offspring in offsprings[i]
                        ])
                        flat_offsprings = np.append(flat_offsprings,
                                                    offspring_add)
                        offsprings[i] = offspring_add
                    for j in range(len(offsprings[i])):
                        self.fitness += offsprings[i][j].fitness_calc(problem)
                        count += 1
            # print('number of all samples: {}'.format(count))
            self.fitness /= count

            return self.fitness, flat_offsprings, offsprings
        else:
            offsprings = mixModel.sample(sample_size)
            idx = np.random.randint(sample_size, size=sub_sample_size)
            offsprings = offsprings[idx]  # Creating sub_samples of samples
            # print('selecting end')
            offsprings = np.array(
                [Chromosome(offspring) for offspring in offsprings])
            sfitness = np.zeros(sub_sample_size)
            # print('fitness_calc start')
            for i in range(sub_sample_size):
                sfitness[i] = offsprings[i].fitness_calc(problem)
            # print('fitness_calc end')
            self.fitness = np.mean(sfitness)
            # print('sample end')
            # print('selecting start')

            self.fitness_calc_time = time() - start
            # best_offspring = np.max(offsprings)
            return self.fitness, offsprings