def main(): normalized = i3.normalize(ct_series, dfs, obs, workdir=os.path.join(workdir, 'normalization')) tilt_corrected = i3.correct_tilt(normalized, workdir=os.path.join( workdir, 'tilt-correction')) if_corrected = i3.correct_intensity_fluctuation( tilt_corrected, workdir=os.path.join(workdir, 'intensity-fluctuation-correction')) angles, sinograms = i3.build_sinograms(if_corrected, workdir=os.path.join( workdir, 'sinogram')) # take the middle part to calculate the center of rotation sino = [s.data for s in sinograms[900:1100]] sino = np.array(sino) proj = np.swapaxes(sino, 0, 1) rot_center = tomopy.find_center(proj, theta, emission=False, init=1024, tol=0.5) rot_center = rot_center[0] # reconstruct recon = i3.reconstruct(angles, sinograms, workdir=outdir, center=rot_center) return
def evaluate(self): self.center.value = tomopy.find_center( self.tomo.value, self.theta.value, ind=self.ind.value, init=self.init.value, tol=self.tol.value, mask=self.mask.value, ratio=self.ratio.value, sinogram_order=self.sinogram_order.value)
def main(): normalized = i3.normalize(ct_series, dfs, obs, workdir=os.path.join(workdir, 'normalization')) tilt_corrected = i3.correct_tilt(normalized, workdir=os.path.join(workdir, 'tilt-correction')) if_corrected = i3.correct_intensity_fluctuation(tilt_corrected, workdir=os.path.join(workdir, 'intensity-fluctuation-correction')) angles, sinograms = i3.build_sinograms(if_corrected, workdir=os.path.join(workdir, 'sinogram')) # take the middle part to calculate the center of rotation sino = [s.data for s in sinograms[900:1100]] sino= np.array(sino) proj = np.swapaxes(sino, 0, 1) rot_center = tomopy.find_center(proj, theta, emission=False, init=1024, tol=0.5) rot_center = rot_center[0] # reconstruct recon = i3.reconstruct(angles, sinograms, workdir=outdir, center=rot_center) return
def tomo_reconstruction(sino, omega, algorithm='gridrec', filter_name='shepp', num_iter=1, center=None, refine_center=False, sinogram_order=True): ''' INPUT -> sino : slice, 2th, x OR 2th, slice, x (with flag sinogram_order=True/False) OUTPUT -> tomo : slice, x, y ''' if center is None: center = sino.shape[1]/2. refine_center = True if refine_center: center = tomopy.find_center(sino, np.radians(omega), init=center, ind=0, tol=0.5, sinogram_order=sinogram_order) algorithm = algorithm.lower() recon_kws = {} if algorithm.startswith('gridr'): recon_kws['filter_name'] = filter_name else: recon_kws['num_iter'] = num_iter tomo = tomopy.recon(sino, np.radians(omega), algorithm=algorithm, center=center, sinogram_order=sinogram_order, **recon_kws) return center, tomo
def tomo_reconstruction(sino, refine_center=False, center_range=None, center=None, method=None, algorithm_A=None, algorithm_B=None, omega=None, sinogram_order=False, **args): ''' INPUT -> sino : slice, 2th, x OR 2th, slice, x (with flag sinogram_order=True) OUTPUT -> tomo : slice, x, y ''' check = check_parameters(sino, method, center, omega, algorithm_A, algorithm_B, sinogram_order) sino, method, center, omega, algorithm_A, algorithm_B, sinogram_order = check if method is None: print('No tomographic reconstruction packages available') return center, np.zeros((1, sino.shape[-1], sino.shape[-1])) if method.lower().startswith('scikit') and HAS_scikit: npts = sino.shape[2] cntr = int( npts - center) # flip axis for compatibility with tomopy convention if not sinogram_order: sino = np.einsum('jik->ijk', sino) args.update({ 'theta': omega, 'filter': algorithm_A, 'interpolation': algorithm_B, 'circle': True }) if refine_center: print(' Refining center; start value: %i' % center) if center_range is None: center_range = 12 rng = int( center_range) if center_range > 0 and center_range < 21 else 12 center_list, negentropy = [], [] for cen in np.arange(cntr - rng, cntr + rng, 1, dtype=int): xslice = slice(npts - 2 * cen, -1) if cen <= npts / 2. else slice( 0, npts - 2 * cen) if sinogram_order: recon = iradon(sino[0, :, xslice].T, **args) else: recon = iradon(sino[0, xslice], **args) recon = recon - recon.min() + 0.005 * (recon.max() - recon.min()) negentropy += [(recon * np.log(recon)).sum()] center_list += [cen] cntr = center_list[np.array(negentropy).argmin()] center = float( npts - cntr) # flip axis for compatibility with tomopy convention print(' Best center: %i' % center) tomo = [] xslice = slice(npts - 2 * cntr, -1) if cntr <= npts / 2. else slice( 0, npts - 2 * cntr) for sino0 in sino: tomo += [iradon(sino0[:, xslice].T, **args)] tomo = np.array(tomo) elif method.lower().startswith('tomopy') and HAS_tomopy: if refine_center: center = tomopy.find_center(sino, np.radians(omega), init=center, ind=0, tol=0.5, sinogram_order=sinogram_order) args.update({ 'center': center, 'algorithm': algorithm_A, 'sinogram_order': sinogram_order }) tomo = tomopy.recon(sino, np.radians(omega), **args) return center, tomo # def registerLarchPlugin(): # return ('_tomo', {'create_tomogrp': create_tomogrp}) # # # def registerLarchGroups(): # return (tomogrp)
def recon3(io_paras, data_paras, rot_center=None, normalize=True, stripe_removal=10, stripe_sigma=2, phase_retrieval=False, opt_center=False, diag_center=False, output="tiff", z_recon_size=None): # Input and output datafile = io_paras.get('datafile') path2white = io_paras.get('path2white', datafile) path2dark = io_paras.get('path2dark', path2white) out_dir = io_paras.get('out_dir') diag_cent_dir = io_paras.get('diag_cent_dir', out_dir + "/center_diagnose/") recon_dir = io_paras.get('recon_dir', out_dir + "/recon/") out_prefix = io_paras.get('out_prefix', "recon_") # Parameters of dataset NumCycles = data_paras.get('NumCycles', 1) # Number of cycles used for recon ProjPerCycle = data_paras.get( 'ProjPerCycle') # Number of projections per cycle, N_theta cycle_offset = data_paras.get('cycle_offset', 0) # Offset in output cycle number proj_start = data_paras.get('proj_start', 0) # Starting projection of reconstruction proj_step = data_paras.get('proj_step') z_start = data_paras.get('z_start', 0) z_end = data_paras.get('z_end', z_start + 1) z_step = data_paras.get('z_step') x_start = data_paras.get('x_start') x_end = data_paras.get('x_end', x_start + 1) x_step = data_paras.get('x_step') white_start = data_paras.get('white_start') white_end = data_paras.get('white_end') dark_start = data_paras.get('dark_start') dark_end = data_paras.get('dark_end') # TIMBIR parameters NumSubCycles = data_paras.get('NumSubCycles', 1) # Number of subcycles in one cycle, K SlewSpeed = data_paras.get('SlewSpeed', 0) # In deg/s MinAcqTime = data_paras.get('MinAcqTime', 0) # In s TotalNumCycles = data_paras.get( 'TotalNumCycles', 1) # Total number of cycles in the full scan data ProjPerRecon = data_paras.get( 'ProjPerRecon', ProjPerCycle) # Number of projections per reconstruction # Calculate thetas for interlaced scan theta = gen_theta_timbir(NumSubCycles, ProjPerCycle, SlewSpeed, MinAcqTime, TotalNumCycles) if ProjPerRecon is None: ProjPerCycle = theta.size // TotalNumCycles else: ProjPerCycle = ProjPerRecon print("Will use %s projections per reconstruction." % ProjPerCycle) # Distribute z slices to processes if z_step is None: z_step = 1 z_pool = get_pool(z_start, z_end, z_step, z_chunk_size=z_recon_size, fmt='slice') slice3 = slice(x_start, x_end, x_step) rot_center_copy = rot_center for cycle in xrange(NumCycles): # Set start and end of each cycle projections_start = cycle * ProjPerCycle + proj_start projections_end = projections_start + ProjPerCycle slice1 = slice(projections_start, projections_end, proj_step) # Setup continuous output if "cont" in output: if not os.path.exists(recon_dir): os.makedirs(recon_dir) cont_fname = recon_dir+"/"+out_prefix+"t_%d_z_%d_%d.bin" \ % (cycle + cycle_offset, z_start, z_end) cont_file = file(cont_fname, 'wb') # Distribute z slices to processes for i in range(_rank, len(z_pool), _nprocs): slice2 = z_pool[i] slices = (slice1, slice2, slice3) white_slices = (slice(white_start, white_end), slice2, slice3) dark_slices = (slice(dark_start, dark_end), slice2, slice3) print( "Running cycle #%s (projs %s to %s, z = %s - %s) on process %s of %s" % (cycle, projections_start, projections_end, slice2.start, slice2.stop, _rank, _nprocs)) # Read HDF5 file. print("Reading datafile %s..." % datafile, end="") sys.stdout.flush() data, white, dark = reader.read_aps_2bm(datafile, slices, white_slices, dark_slices, path2white=path2white, path2dark=path2dark) # data += 1 # theta = gen_theta(data.shape[0]) print("Done!") print("Data shape = %s;\nwhite shape = %s;\ndark shape = %s." % (data.shape, white.shape, dark.shape)) # data = tomopy.focus_region(data, dia=1560, xcoord=1150, ycoord=1080, # center=rot_center, pad=False, corr=True) # rot_center = None # print("Data shape = %s;\nwhite shape = %s;\ndark shape = %s." # % (data.shape, white.shape, dark.shape)) ## Normalize dataset using data_white and data_dark if normalize: print("Normalizing data ...") # white = white.mean(axis=0).reshape(-1, *data.shape[1:]) # dark = dark.mean(axis=0).reshape(-1, *data.shape[1:]) # data = (data - dark) / (white - dark) data = tomopy.normalize(data, white, dark, cutoff=None, ncore=_ncore, nchunk=_nchunk)[...] ## Remove stripes caused by dead pixels in the detector if stripe_removal: print("Removing stripes ...") data = tomopy.remove_stripe_fw(data, level=stripe_removal, wname='db5', sigma=stripe_sigma, pad=True, ncore=_ncore, nchunk=_nchunk) # data = tomopy.remove_stripe_ti(data, nblock=0, alpha=1.5, # ncore=None, nchunk=None) # # Show preprocessed projection # plt.figure("%s-prep" % projections_start) # plt.imshow(d.data[0,:,:], cmap=cm.Greys_r) # plt.savefig(out_dir+"/preprocess/%s-prep.jpg" # % projections_start) # # plt.show() # continue ## Phase retrieval if phase_retrieval: print("Retrieving phase ...") data = tomopy.retrieve_phase(data, pixel_size=1.1e-4, dist=6, energy=25.7, alpha=1e-2, pad=True, ncore=_ncore, nchunk=_nchunk) ## Determine and set the center of rotation if opt_center: # or (rot_center == None): ### Using optimization method to automatically find the center # d.optimize_center() print("Optimizing center ...", end="") sys.stdout.flush() rot_center = tomopy.find_center(data, theta, ind=None, emission=True, init=None, tol=0.5, mask=True, ratio=1.) print("Done!") print("center = %s" % rot_center) if diag_center: ### Output the reconstruction results using a range of centers, ### and then manually find the optimal center. # d.diagnose_center() if not os.path.exists(diag_cent_dir): os.makedirs(diag_cent_dir) print("Testing centers ...", end="") sys.stdout.flush() tomopy.write_center( data, theta, dpath=diag_cent_dir, cen_range=[center_start, center_end, center_step], ind=None, emission=False, mask=False, ratio=1.) print("Done!") ## Flip odd frames # if (cycle % 2): # data[...] = data[...,::-1] # rot_center = data.shape[-1] - rot_center_copy # else: # rot_center = rot_center_copy ## Reconstruction using FBP print("Running gridrec ...", end="") sys.stdout.flush() recon = tomopy.recon( data, theta[slice1], center=rot_center, emission=False, algorithm='gridrec', # num_gridx=None, num_gridy=None, filter_name='shepp', ncore=_ncore, nchunk=_nchunk) print("Done!") ## Collect background # if cycle == 0: # bg = recon # elif cycle < 4: # bg += recon # else: # recon -= bg/4. # Write to stack of TIFFs. if not os.path.exists(recon_dir): os.makedirs(recon_dir) out_fname = recon_dir + "/" + out_prefix + "t_%d_z_" % ( cycle + cycle_offset) if "hdf" in output: hdf_fname = out_fname + "%d_%d.hdf5" % (slice2.start, slice2.stop) print("Writing reconstruction output file %s..." % hdf_fname, end="") sys.stdout.flush() tomopy.write_hdf5(recon, fname=hdf_fname, gname='exchange', overwrite=False) print("Done!") if "tif" in output: if "stack" in output: # single stacked file for multiple z tiff_fname = out_fname + "%d_%d.tiff" % (slice2.start, slice2.stop) print("Writing reconstruction tiff files %s ..." % tiff_fname, end="") sys.stdout.flush() tomopy.write_tiff(recon, fname=tiff_fname, overwrite=False) print("Done!") else: # separate files for different z for iz, z in enumerate( range(slice2.start, slice2.stop, slice2.step)): tiff_fname = out_fname + "%d.tiff" % z print("Writing reconstruction tiff files %s ..." % tiff_fname, end="") sys.stdout.flush() tomopy.write_tiff(recon[iz], fname=tiff_fname, overwrite=False) print("Done!") if "bin" in output: bin_fname = out_fname + "%d_%d.bin" % (slice2.start, slice2.stop) print("Writing reconstruction to binary files %s..." % bin_fname, end="") sys.stdout.flush() recon.tofile(bin_fname) if "cont" in output: print("Writing reconstruction to binary files %s..." % cont_fname, end="") sys.stdout.flush() recon.tofile(cont_file) print("Done!") if "cont" in output: cont_file.close() if _usempi: comm.Barrier() if _rank == 0: print("All done!")
def recon(io_paras, data_paras, rot_center=None, normalize=True, stripe_removal=10, phase_retrieval=False, opt_center=False, diag_center=False, output="tiff"): # Input and output datafile = io_paras.get('datafile') path2white = io_paras.get('path2white', datafile) path2dark = io_paras.get('path2dark', path2white) out_dir = io_paras.get('out_dir') diag_cent_dir = io_paras.get('diag_cent_dir', out_dir+"/center_diagnose/") recon_dir = io_paras.get('recon_dir', out_dir+"/recon/") out_prefix = io_paras.get('out_prefix', "recon_") # Parameters of dataset NumCycles = data_paras.get('NumCycles', 1) # Number of cycles used for recon ProjPerCycle = data_paras.get('ProjPerCycle') # Number of projections per cycle, N_theta cycle_offset = data_paras.get('cycle_offset', 0) # Offset in output cycle number proj_start = data_paras.get('proj_start', 0) # Starting projection of reconstruction proj_step = data_paras.get('proj_step') z_start = data_paras.get('z_start', 0) z_end = data_paras.get('z_end', z_start+1) z_step = data_paras.get('z_step') x_start = data_paras.get('x_start') x_end = data_paras.get('x_end', x_start+1) x_step = data_paras.get('x_step') white_start = data_paras.get('white_start') white_end = data_paras.get('white_end') dark_start = data_paras.get('dark_start') dark_end = data_paras.get('dark_end') rot_center_copy = rot_center for cycle in xrange(NumCycles): # Set start and end of each cycle projections_start = cycle * ProjPerCycle + proj_start projections_end = projections_start + ProjPerCycle slice1 = slice(projections_start, projections_end, proj_step) slice2 = slice(z_start, z_end, z_step) slice3 = slice(x_start, x_end, x_step) slices = (slice1, slice2, slice3) white_slices = (slice(white_start, white_end), slice2, slice3) dark_slices = (slice(dark_start, dark_end), slice2, slice3) print("Running cycle #%s (projs %s to %s)" % (cycle, projections_start, projections_end)) # Read HDF5 file. print("Reading datafile %s..." % datafile, end="") sys.stdout.flush() data, white, dark = reader.read_aps_2bm(datafile, slices, white_slices, dark_slices, path2white=path2white, path2dark=path2dark) theta = gen_theta(data.shape[0]) print("Done!") print("Data shape = %s;\nwhite shape = %s;\ndark shape = %s." % (data.shape, white.shape, dark.shape)) ## Normalize dataset using data_white and data_dark if normalize: print("Normalizing data ...") # white = white.mean(axis=0).reshape(-1, *data.shape[1:]) # dark = dark.mean(axis=0).reshape(-1, *data.shape[1:]) # data = (data - dark) / (white - dark) data = tomopy.normalize(data, white, dark, cutoff=None, ncore=_ncore, nchunk=None)[...] ## Remove stripes caused by dead pixels in the detector if stripe_removal: print("Removing stripes ...") data = tomopy.remove_stripe_fw(data, level=stripe_removal, wname='db5', sigma=2, pad=True, ncore=_ncore, nchunk=None) # data = tomopy.remove_stripe_ti(data, nblock=0, alpha=1.5, # ncore=None, nchunk=None) # # Show preprocessed projection # plt.figure("%s-prep" % projections_start) # plt.imshow(d.data[0,:,:], cmap=cm.Greys_r) # plt.savefig(out_dir+"/preprocess/%s-prep.jpg" # % projections_start) # # plt.show() # continue ## Phase retrieval if phase_retrieval: print("Retrieving phase ...") data = tomopy.retrieve_phase(data, pixel_size=1e-4, dist=50, energy=20, alpha=1e-3, pad=True, ncore=_ncore, nchunk=None) ## Determine and set the center of rotation if opt_center or (rot_center == None): ### Using optimization method to automatically find the center # d.optimize_center() print("Optimizing center ...", end="") sys.stdout.flush() rot_center = tomopy.find_center(data, theta, ind=None, emission=True, init=None, tol=0.5, mask=True, ratio=1.) print("Done!") print("center = %s" % rot_center) if diag_center: ### Output the reconstruction results using a range of centers, ### and then manually find the optimal center. # d.diagnose_center() if not os.path.exists(diag_cent_dir): os.makedirs(diag_cent_dir) print("Testing centers ...", end="") sys.stdout.flush() tomopy.write_center(data, theta, dpath=diag_cent_dir, cen_range=[center_start, center_end, center_step], ind=None, emission=False, mask=False, ratio=1.) print("Done!") ## Flip odd frames if (cycle % 2): data[...] = data[...,::-1] rot_center = data.shape[-1] - rot_center_copy else: rot_center = rot_center_copy ## Reconstruction using FBP print("Running gridrec ...", end="") sys.stdout.flush() recon = tomopy.recon(data, theta, center=rot_center, emission=False, algorithm='gridrec', # num_gridx=None, num_gridy=None, filter_name='shepp', ncore=_ncore, nchunk=_nchunk) print("Done!") ## Collect background # if cycle == 0: # bg = recon # elif cycle < 4: # bg += recon # else: # recon -= bg/4. # Write to stack of TIFFs. if not os.path.exists(recon_dir): os.makedirs(recon_dir) out_fname = recon_dir+"/"+out_prefix+"t_%d" % (cycle + cycle_offset) if "hdf" in output: hdf_fname = out_fname + ".hdf5" print("Writing reconstruction output file %s..." % hdf_fname, end="") sys.stdout.flush() tomopy.write_hdf5(recon, fname=hdf_fname, gname='exchange', overwrite=False) print("Done!") if "tif" in output: tiff_fname = out_fname + ".tiff" print("Writing reconstruction tiff files %s ..." % tiff_fname, end="") sys.stdout.flush() tomopy.write_tiff_stack(recon, fname=tiff_fname, axis=0, digit=5, start=0, overwrite=False) print("Done!") if "bin" in output: bin_fname = out_fname + ".bin" print("Writing reconstruction to binary files %s..." % bin_fname, end="") sys.stdout.flush() recon.tofile(bin_fname)
if __name__ == '__main__': # Set path to the micro-CT data to reconstruct. fname = 'data_dir/sample_name_prefix' # Select the sinogram range to reconstruct. start = 0 end = 16 # Read the APS 1-ID raw data. proj, flat, dark = tomopy.read_aps_1id(fname, sino=(start, end)) # Set data collection angles as equally spaced between 0-180 degrees. theta = tomopy.angles(proj.shape[0]) # Flat-field correction of raw data. proj = tomopy.normalize(proj, flat, dark) # Find rotation center. rot_center = tomopy.find_center(proj, theta, emission=False, init=1024, ind=0, tol=0.5) print "Center of rotation: ", rot_center # Reconstruct object using Gridrec algorithm. rec = tomopy.recon(proj, theta, center=rot_center, algorithm='gridrec', emission=False) # Mask each reconstructed slice with a circle. rec = tomopy.circ_mask(rec, axis=0, ratio=0.95) # Write data as stack of TIFs. tomopy.write_tiff_stack(rec, fname='recon_dir/recon')
def transform_scalars(dataset, rot_center=0, tune_rot_center=True): """Reconstruct sinograms using the tomopy gridrec algorithm Typically, a data exchange file would be loaded for this reconstruction. This operation will attempt to perform flat-field correction of the raw data using the dark and white background data found in the data exchange file. This operator also requires either the tomviz/tomopy-pipeline docker image, or a python environment with tomopy installed. """ from tomviz import utils import numpy as np import tomopy # Get the current volume as a numpy array. array = utils.get_array(dataset) dark = dataset.dark white = dataset.white angles = utils.get_tilt_angles(dataset) tilt_axis = dataset.tilt_axis # TomoPy wants the tilt axis to be zero, so ensure that is true if tilt_axis == 2: order = [2, 1, 0] array = np.transpose(array, order) if dark is not None and white is not None: dark = np.transpose(dark, order) white = np.transpose(white, order) if angles is not None: # tomopy wants radians theta = np.radians(angles) else: # Assume it is equally spaced between 0 and 180 degrees theta = tomopy.angles(array.shape[0]) # Perform flat-field correction of raw data if white is not None and dark is not None: array = tomopy.normalize(array, white, dark, cutoff=1.4) if rot_center == 0: # Try to find it automatically init = array.shape[2] / 2.0 rot_center = tomopy.find_center(array, theta, init=init, ind=0, tol=0.5) elif tune_rot_center: # Tune the center rot_center = tomopy.find_center(array, theta, init=rot_center, ind=0, tol=0.5) # Calculate -log(array) array = tomopy.minus_log(array) # Remove nan, neg, and inf values array = tomopy.remove_nan(array, val=0.0) array = tomopy.remove_neg(array, val=0.00) array[np.where(array == np.inf)] = 0.00 # Perform the reconstruction array = tomopy.recon(array, theta, center=rot_center, algorithm='gridrec') # Mask each reconstructed slice with a circle. array = tomopy.circ_mask(array, axis=0, ratio=0.95) # Set the transformed array child = utils.make_child_dataset(dataset) utils.mark_as_volume(child) utils.set_array(child, array) return_values = {} return_values['reconstruction'] = child return return_values
def shift_correction(projs, thetas, center=None, init_shifts=None, scale=1, alg="gridrec", init_recon=None, **kwargs): # initial shift values if init_shifts is None: shifts = np.zeros((projs.shape[0], 2)) else: shifts = np.copy(init_shifts) # scaled projections used after recon/reproject if scale != 1: scaled_projs = zoom_array(projs, 1.0 / scale) else: scaled_projs = projs if center is None: center = projs.shape[2] / 2. center /= scale # perform initial shifts shifted_projs = apply_shifts(projs, shifts) # scale shifted if necessary if scale != 1: shifted_projs = zoom_array(shifted_projs, 1.0 / scale) np.clip(shifted_projs, 0, 1.0, shifted_projs) tomopy.minus_log(shifted_projs, out=shifted_projs) # find center of rotation logger.info("finding center...") center = tomopy.find_center(shifted_projs, thetas, tol=0.01, init=center, algorithm=alg, **kwargs) logger.info("Updated center to be %0.3f", center * scale) # recon logger.info("Shift reconstruct using %s" % alg) rec = init_recon rec = tomopy.recon(shifted_projs, thetas, center, sinogram_order=False, algorithm=alg, init_recon=rec, **kwargs) del shifted_projs np.clip(rec, 0.0, 1.0, rec) #TODO: needed? # simulate projections sim_projs = tomopy.project(rec, thetas, center, pad=False, emission=False) write_stack("test_rec", rec) write_stack("sim_projs", sim_projs) # calculate shift for each translation_sum = np.zeros((2, )) logger.info("Projecting and aligning slices") for t in range(sim_projs.shape[0]): translation = register_translation(sim_projs[t], scaled_projs[t], 100)[0] translation_sum += np.abs(shifts[t] - translation * scale) shifts[t] = translation * scale logger.info("translation sum is y:%0.2f, x:%0.2f" % (translation_sum[0], translation_sum[1])) del scaled_projs del sim_projs return shifts, rec, center * scale
# -*- coding: utf-8 -*- """ TomoPy example script to reconstruct the tomography data as with gridrec. """ from __future__ import print_function import tomopy import dxchange if __name__ == '__main__': # Set path to the micro-CT data to reconstruct. fname = '../../../tomopy/data/tooth.h5' # Select the sinogram range to reconstruct. start = 0 end = 2 # Read the APS 2-BM 0r 32-ID raw data. proj, flat, dark = dxchange.read_aps_32id(fname, sino=(start, end)) # Set data collection angles as equally spaced between 0-180 degrees. theta = tomopy.angles(proj.shape[0]) # Set data collection angles as equally spaced between 0-180 degrees. proj = tomopy.normalize(proj, flat, dark) # Set data collection angles as equally spaced between 0-180 degrees. rot_center = tomopy.find_center(proj, theta, init=290, ind=0, tol=0.5) tomopy.minus_log(proj)
def cleaning( filename, bffilename=None, inputPath='/', #input path, location of the data set to reconstruct outputPath=None, # define an output path (default is inputPath), a sub-folder will be created based on file name outputFilename=None, #file name for output tif files (a number and .tiff will be added). default is based on input filename fulloutputPath=None, # definte the full output path, no automatic sub-folder will be created doFWringremoval=True, # Fourier-wavelet ring removal ringSigma=3, # damping parameter in Fourier space (Fourier-wavelet ring removal) ringLevel=8, # number of wavelet transform levels (Fourier-wavelet ring removal) ringWavelet='db5', # type of wavelet filter (Fourier-wavelet ring removal) ringNBlock=0, # used in Titarenko ring removal (doTIringremoval) ringAlpha=1.5, # used in Titarenko ring removal (doTIringremoval) ringSize=5, # used in smoothing filter ring removal (doSFringremoval) butterworth_cutoff=0.25, #0.1 would be very smooth, 0.4 would be very grainy (reconstruction) butterworth_order=2, # for reconstruction npad=None, # amount to pad data before reconstruction projused=None, # should be slicing in projection dimension (start,end,step) Be sure to add one to the end as stop in python means the last value is omitted sinoused=None, # should be sliceing in sinogram dimension (start,end,step). If first value is negative, it takes the number of slices from the second value in the middle of the stack. angle_offset=0, # this is the angle offset from our default (270) so that tomopy yields output in the same orientation as previous software (Octopus) anglelist=None, # if not set, will assume evenly spaced angles which will be calculated by the angular range and number of angles found in the file. if set to -1, will read individual angles from each image. alternatively, a list of angles can be passed. cor=None, # center of rotation (float). If not used then cor will be detected automatically corFunction='pc', # center of rotation function to use - can be 'pc', 'vo', or 'nm' voInd=None, # index of slice to use for cor search (vo) voSMin=-40, # min radius for searching in sinogram (vo) voSMax=40, # max radius for searching in sinogram (vo) voSRad=10, # search radius (vo) voStep=0.5, # search step (vo) voRatio=2.0, # ratio of field-of-view and object size (vo) voDrop=20, # drop lines around vertical center of mask (vo) nmInd=None, # index of slice to use for cor search (nm) nmInit=None, # initial guess for center (nm) nmTol=0.5, # desired sub-pixel accuracy (nm) nmMask=True, # if True, limits analysis to circular region (nm) nmRatio=1.0, # ratio of radius of circular mask to edge of reconstructed image (nm) nmSinoOrder=False, # if True, analyzes in sinogram space. If False, analyzes in radiograph space useNormalize_nf=False, # normalize based on background intensity (nf) bfexposureratio=1 #ratio of exposure time of bf to exposure time of sample ): start_time = time.time() print("Start {} at:".format(filename) + time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.localtime())) outputFilename = os.path.splitext( filename)[0] if outputFilename is None else outputFilename outputPath = inputPath + 'rec' + os.path.splitext( filename )[0] + '/' if outputPath is None else outputPath + 'rec' + os.path.splitext( filename)[0] + '/' fulloutputPath = outputPath if fulloutputPath is None else fulloutputPath tempfilenames = [fulloutputPath + 'tmp0.h5', fulloutputPath + 'tmp1.h5'] filenametowrite = fulloutputPath + outputFilename print(filenametowrite) print("cleaning up previous temp files", end="") for tmpfile in tempfilenames: try: os.remove(tmpfile) except OSError: pass print(", reading metadata") datafile = h5py.File(inputPath + filename, 'r') gdata = dict(dxchange.reader._find_dataset_group(datafile).attrs) numslices = int(gdata['nslices']) numangles = int(gdata['nangles']) print('There are ' + str(numslices) + ' sinograms and ' + str(numangles) + ' projections') angularrange = float(gdata['arange']) numrays = int(gdata['nrays']) npad = int(np.ceil(numrays * np.sqrt(2)) - numrays) // 2 if npad is None else npad if projused is not None and ( projused[1] > numangles - 1 or projused[0] < 0 ): #allows program to deal with out of range projection values if projused[1] > numangles: print( "End Projection value greater than number of angles. Value has been lowered to the number of angles " + str(numangles)) projused = (projused[0], numangles, projused[2]) if projused[0] < 0: print("Start Projection value less than zero. Value raised to 0") projused = (0, projused[1], projused[2]) if projused is None: projused = (0, numangles, 1) else: #if projused is different than default, need to chnage numangles and angularrange #dula attempting to do this with these two lines, we'll see if it works! 11/16/17 testrange = range(projused[0], projused[1], projused[2]) #+1 because we need to compensate for the range functions last value always being one less than the second arg angularrange = (angularrange / (numangles - 1)) * (projused[1] - projused[0]) # want angular range to stay constant if we keep the end values consistent numangles = len(testrange) # ndark = int(gdata['num_dark_fields']) # ind_dark = list(range(0, ndark)) # group_dark = [numangles - 1] inter_bright = int(gdata['i0cycle']) if inter_bright > 0: group_flat = list(range(0, numangles, inter_bright)) if group_flat[-1] != numangles - 1: group_flat.append(numangles - 1) elif inter_bright == 0: group_flat = [0, numangles - 1] else: group_flat = None # figure out the angle list (a list of angles, one per projection image) dtemp = datafile[list(datafile.keys())[0]] fltemp = list(dtemp.keys()) firstangle = float(dtemp[fltemp[0]].attrs.get('rot_angle', 0)) anglegap = angularrange / (numangles - 1) firstangle += anglegap * projused[0] #accounting for projused argument if anglelist is None: #the offset angle should offset from the angle of the first image, which is usually 0, but in the case of timbir data may not be. #we add the 270 to be inte same orientation as previous software used at bl832 angle_offset = 270 + angle_offset - firstangle anglelist = tomopy.angles(numangles, angle_offset, angle_offset - angularrange) elif anglelist == -1: anglelist = np.zeros(shape=numangles) for icount in range(0, numangles): anglelist[icount] = np.pi / 180 * (270 + angle_offset - float( dtemp[fltemp[icount]].attrs['rot_angle'])) #figure out how user can pass to do central x number of slices, or set of slices dispersed throughout (without knowing a priori the value of numslices) if sinoused is None: sinoused = (0, numslices, 1) elif sinoused[0] < 0: sinoused = ( int(np.floor(numslices / 2.0) - np.ceil(sinoused[1] / 2.0)), int(np.floor(numslices / 2.0) + np.floor(sinoused[1] / 2.0)), 1) if cor is None: print("Detecting center of rotation", end="") if angularrange > 300: lastcor = int(np.floor(numangles / 2) - 1) else: lastcor = numangles - 1 # I don't want to see the warnings about the reader using a deprecated variable in dxchange with warnings.catch_warnings(): warnings.simplefilter("ignore") tomo, flat, dark, floc = dxchange.read_als_832h5( inputPath + filename, ind_tomo=(0, lastcor)) if bffilename is not None: tomobf, flatbf, darkbf, flocbf = dxchange.read_als_832h5( inputPath + bffilename) flat = tomobf tomo = tomo.astype(np.float32) if useNormalize_nf: tomopy.normalize_nf(tomo, flat, dark, floc, out=tomo) if bfexposureratio != 1: tomo = tomo * bfexposureratio else: tomopy.normalize(tomo, flat, dark, out=tomo) if bfexposureratio != 1: tomo = tomo * bfexposureratio if corFunction == 'vo': # same reason for catching warnings as above with warnings.catch_warnings(): warnings.simplefilter("ignore") cor = tomopy.find_center_vo(tomo, ind=voInd, smin=voSMin, smax=voSMax, srad=voSRad, step=voStep, ratio=voRatio, drop=voDrop) elif corFunction == 'nm': cor = tomopy.find_center( tomo, tomopy.angles(numangles, angle_offset, angle_offset - angularrange), ind=nmInd, init=nmInit, tol=nmTol, mask=nmMask, ratio=nmRatio, sinogram_order=nmSinoOrder) elif corFunction == 'pc': cor = tomopy.find_center_pc(tomo[0], tomo[1], tol=0.25) else: raise ValueError("\'corFunction\' must be one of: [ pc, vo, nm ].") print(", {}".format(cor)) else: print("using user input center of {}".format(cor)) tomo, flat, dark, floc = dxchange.read_als_832h5( inputPath + filename, ind_tomo=range(projused[0], projused[1], projused[2]), sino=(sinoused[0], sinoused[1], sinoused[2])) tomo = tomo.astype(np.float32, copy=False) tomopy.normalize(tomo, flat, dark, out=tomo) mx = np.float32(0.01) ne.evaluate('where(tomo>mx, tomo, mx)', out=tomo) tomopy.minus_log(tomo, out=tomo) tomo = tomopy.remove_stripe_fw(tomo, sigma=ringSigma, level=ringLevel, pad=True, wname=ringWavelet) tomo = tomopy.pad(tomo, 2, npad=npad, mode='edge') tomo = np.swapaxes(tomo, 0, 1) theta = anglelist print('It took {:.3f} s to process {}'.format(time.time() - start_time, inputPath + filename)) return tomo, theta, cor
def recon( filename, inputPath = './', outputPath = None, outputFilename = None, doOutliers1D = False, # outlier removal in 1d (along sinogram columns) outlier_diff1D = 750, # difference between good data and outlier data (outlier removal) outlier_size1D = 3, # radius around each pixel to look for outliers (outlier removal) doOutliers2D = False, # outlier removal, standard 2d on each projection outlier_diff2D = 750, # difference between good data and outlier data (outlier removal) outlier_size2D = 3, # radius around each pixel to look for outliers (outlier removal) doFWringremoval = True, # Fourier-wavelet ring removal doTIringremoval = False, # Titarenko ring removal doSFringremoval = False, # Smoothing filter ring removal ringSigma = 3, # damping parameter in Fourier space (Fourier-wavelet ring removal) ringLevel = 8, # number of wavelet transform levels (Fourier-wavelet ring removal) ringWavelet = 'db5', # type of wavelet filter (Fourier-wavelet ring removal) ringNBlock = 0, # used in Titarenko ring removal (doTIringremoval) ringAlpha = 1.5, # used in Titarenko ring removal (doTIringremoval) ringSize = 5, # used in smoothing filter ring removal (doSFringremoval) doPhaseRetrieval = False, # phase retrieval alphaReg = 0.0002, # smaller = smoother (used for phase retrieval) propagation_dist = 75, # sample-to-scintillator distance (phase retrieval) kev = 24, # energy level (phase retrieval) butterworth_cutoff = 0.25, #0.1 would be very smooth, 0.4 would be very grainy (reconstruction) butterworth_order = 2, # for reconstruction doTranslationCorrection = False, # correct for linear drift during scan xshift = 0, # undesired dx transation correction (from 0 degree to 180 degree proj) yshift = 0, # undesired dy transation correction (from 0 degree to 180 degree proj) doPolarRing = False, # ring removal Rarc=30, # min angle needed to be considered ring artifact (ring removal) Rmaxwidth=100, # max width of rings to be filtered (ring removal) Rtmax=3000.0, # max portion of image to filter (ring removal) Rthr=3000.0, # max value of offset due to ring artifact (ring removal) Rtmin=-3000.0, # min value of image to filter (ring removal) cor=None, # center of rotation (float). If not used then cor will be detected automatically corFunction = 'pc', # center of rotation function to use - can be 'pc', 'vo', or 'nm' voInd = None, # index of slice to use for cor search (vo) voSMin = -40, # min radius for searching in sinogram (vo) voSMax = 40, # max radius for searching in sinogram (vo) voSRad = 10, # search radius (vo) voStep = 0.5, # search step (vo) voRatio = 2.0, # ratio of field-of-view and object size (vo) voDrop = 20, # drop lines around vertical center of mask (vo) nmInd = None, # index of slice to use for cor search (nm) nmInit = None, # initial guess for center (nm) nmTol = 0.5, # desired sub-pixel accuracy (nm) nmMask = True, # if True, limits analysis to circular region (nm) nmRatio = 1.0, # ratio of radius of circular mask to edge of reconstructed image (nm) nmSinoOrder = False, # if True, analyzes in sinogram space. If False, analyzes in radiograph space use360to180 = False, # use 360 to 180 conversion doBilateralFilter = False, # if True, uses bilateral filter on image just before write step # NOTE: image will be converted to 8bit if it is not already bilateral_srad = 3, # spatial radius for bilateral filter (image will be converted to 8bit if not already) bilateral_rrad = 30, # range radius for bilateral filter (image will be converted to 8bit if not already) castTo8bit = False, # convert data to 8bit before writing cast8bit_min=-10, # min value if converting to 8bit cast8bit_max=30, # max value if converting to 8bit useNormalize_nf = False, # normalize based on background intensity (nf) chunk_proj = 100, # chunk size in projection direction chunk_sino = 100, # chunk size in sinogram direction npad = None, # amount to pad data before reconstruction projused = None, #should be slicing in projection dimension (start,end,step) sinoused = None, #should be sliceing in sinogram dimension (start,end,step). If first value is negative, it takes the number of slices from the second value in the middle of the stack. correcttilt = 0, #tilt dataset tiltcenter_slice = None, # tilt center (x direction) tiltcenter_det = None, # tilt center (y direction) angle_offset = 0, #this is the angle offset from our default (270) so that tomopy yields output in the same orientation as previous software (Octopus) anglelist = None, #if not set, will assume evenly spaced angles which will be calculated by the angular range and number of angles found in the file. if set to -1, will read individual angles from each image. alternatively, a list of angles can be passed. doBeamHardening = False, #turn on beam hardening correction, based on "Correction for beam hardening in computed tomography", Gabor Herman, 1979 Phys. Med. Biol. 24 81 BeamHardeningCoefficients = None, #6 values, tomo = a0 + a1*tomo + a2*tomo^2 + a3*tomo^3 + a4*tomo^4 + a5*tomo^5 projIgnoreList = None, #projections to be ignored in the reconstruction (for simplicity in the code, they will not be removed and will be processed as all other projections but will be set to zero absorption right before reconstruction. *args, **kwargs): start_time = time.time() print("Start {} at:".format(filename)+time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.localtime())) outputPath = inputPath if outputPath is None else outputPath outputFilename = filename if outputFilename is None else outputFilename outputFilename = outputFilename.replace('.h5','') tempfilenames = [outputPath+'tmp0.h5',outputPath+'tmp1.h5'] filenametowrite = outputPath+'/rec'+filename.strip(".h5")+'/'+outputFilename #filenametowrite = outputPath+'/rec'+filename+'/'+outputFilename print("cleaning up previous temp files", end="") for tmpfile in tempfilenames: try: os.remove(tmpfile) except OSError: pass print(", reading metadata") datafile = h5py.File(inputPath+filename, 'r') gdata = dict(dxchange.reader._find_dataset_group(datafile).attrs) pxsize = float(gdata['pxsize'])/10 # /10 to convert units from mm to cm numslices = int(gdata['nslices']) numangles = int(gdata['nangles']) angularrange = float(gdata['arange']) numrays = int(gdata['nrays']) npad = int(np.ceil(numrays * np.sqrt(2)) - numrays)//2 if npad is None else npad projused = (0,numangles-1,1) if projused is None else projused # ndark = int(gdata['num_dark_fields']) # ind_dark = list(range(0, ndark)) # group_dark = [numangles - 1] inter_bright = int(gdata['i0cycle']) nflat = int(gdata['num_bright_field']) ind_flat = list(range(0, nflat)) if inter_bright > 0: group_flat = list(range(0, numangles, inter_bright)) if group_flat[-1] != numangles - 1: group_flat.append(numangles - 1) elif inter_bright == 0: group_flat = [0, numangles - 1] else: group_flat = None ind_tomo = list(range(0, numangles)) floc_independent = dxchange.reader._map_loc(ind_tomo, group_flat) #figure out the angle list (a list of angles, one per projection image) dtemp = datafile[list(datafile.keys())[0]] fltemp = list(dtemp.keys()) firstangle = float(dtemp[fltemp[0]].attrs.get('rot_angle',0)) if anglelist is None: #the offset angle should offset from the angle of the first image, which is usually 0, but in the case of timbir data may not be. #we add the 270 to be inte same orientation as previous software used at bl832 angle_offset = 270 + angle_offset - firstangle anglelist = tomopy.angles(numangles, angle_offset, angle_offset-angularrange) elif anglelist==-1: anglelist = np.zeros(shape=numangles) for icount in range(0,numangles): anglelist[icount] = np.pi/180*(270 + angle_offset - float(dtemp[fltemp[icount]].attrs['rot_angle'])) #if projused is different than default, need to chnage numangles and angularrange #can't do useNormalize_nf and doOutliers2D at the same time, or doOutliers2D and doOutliers1D at the same time, b/c of the way we chunk, for now just disable that if useNormalize_nf==True and doOutliers2D==True: useNormalize_nf = False print("we cannot currently do useNormalize_nf and doOutliers2D at the same time, turning off useNormalize_nf") if doOutliers2D==True and doOutliers1D==True: doOutliers1D = False print("we cannot currently do doOutliers1D and doOutliers2D at the same time, turning off doOutliers1D") #figure out how user can pass to do central x number of slices, or set of slices dispersed throughout (without knowing a priori the value of numslices) if sinoused is None: sinoused = (0,numslices,1) elif sinoused[0]<0: sinoused=(int(np.floor(numslices/2.0)-np.ceil(sinoused[1]/2.0)),int(np.floor(numslices/2.0)+np.floor(sinoused[1]/2.0)),1) num_proj_per_chunk = np.minimum(chunk_proj,projused[1]-projused[0]) numprojchunks = (projused[1]-projused[0]-1)//num_proj_per_chunk+1 num_sino_per_chunk = np.minimum(chunk_sino,sinoused[1]-sinoused[0]) numsinochunks = (sinoused[1]-sinoused[0]-1)//num_sino_per_chunk+1 numprojused = (projused[1]-projused[0])//projused[2] numsinoused = (sinoused[1]-sinoused[0])//sinoused[2] BeamHardeningCoefficients = (0, 1, 0, 0, 0, .1) if BeamHardeningCoefficients is None else BeamHardeningCoefficients if cor is None: print("Detecting center of rotation", end="") if angularrange>300: lastcor = int(np.floor(numangles/2)-1) else: lastcor = numangles-1 #I don't want to see the warnings about the reader using a deprecated variable in dxchange with warnings.catch_warnings(): warnings.simplefilter("ignore") tomo, flat, dark, floc = dxchange.read_als_832h5(inputPath+filename,ind_tomo=(0,lastcor)) tomo = tomo.astype(np.float32) if useNormalize_nf: tomopy.normalize_nf(tomo, flat, dark, floc, out=tomo) else: tomopy.normalize(tomo, flat, dark, out=tomo) if corFunction == 'vo': # same reason for catching warnings as above with warnings.catch_warnings(): warnings.simplefilter("ignore") cor = tomopy.find_center_vo(tomo, ind=voInd, smin=voSMin, smax=voSMax, srad=voSRad, step=voStep, ratio=voRatio, drop=voDrop) elif corFunction == 'nm': cor = tomopy.find_center(tomo, tomopy.angles(numangles, angle_offset, angle_offset-angularrange), ind=nmInd, init=nmInit, tol=nmTol, mask=nmMask, ratio=nmRatio, sinogram_order=nmSinoOrder) elif corFunction == 'pc': cor = tomopy.find_center_pc(tomo[0], tomo[1], tol=0.25) else: raise ValueError("\'corFunction\' must be one of: [ pc, vo, nm ].") print(", {}".format(cor)) else: print("using user input center of {}".format(cor)) function_list = [] if doOutliers1D: function_list.append('remove_outlier1d') if doOutliers2D: function_list.append('remove_outlier2d') if useNormalize_nf: function_list.append('normalize_nf') else: function_list.append('normalize') function_list.append('minus_log') if doBeamHardening: function_list.append('beam_hardening') if doFWringremoval: function_list.append('remove_stripe_fw') if doTIringremoval: function_list.append('remove_stripe_ti') if doSFringremoval: function_list.append('remove_stripe_sf') if correcttilt: function_list.append('correcttilt') if use360to180: function_list.append('do_360_to_180') if doPhaseRetrieval: function_list.append('phase_retrieval') function_list.append('recon_mask') if doPolarRing: function_list.append('polar_ring') if castTo8bit: function_list.append('castTo8bit') if doBilateralFilter: function_list.append('bilateral_filter') function_list.append('write_output') # Figure out first direction to slice for func in function_list: if slice_dir[func] != 'both': axis = slice_dir[func] break done = False curfunc = 0 curtemp = 0 while True: # Loop over reading data in certain chunking direction if axis=='proj': niter = numprojchunks else: niter = numsinochunks for y in range(niter): # Loop over chunks print("{} chunk {} of {}".format(axis, y+1, niter)) if curfunc==0: with warnings.catch_warnings(): warnings.simplefilter("ignore") if axis=='proj': tomo, flat, dark, floc = dxchange.read_als_832h5(inputPath+filename,ind_tomo=range(y*num_proj_per_chunk+projused[0],np.minimum((y + 1)*num_proj_per_chunk+projused[0],numangles)),sino=(sinoused[0],sinoused[1], sinoused[2]) ) else: tomo, flat, dark, floc = dxchange.read_als_832h5(inputPath+filename,ind_tomo=range(projused[0],projused[1],projused[2]),sino=(y*num_sino_per_chunk+sinoused[0],np.minimum((y + 1)*num_sino_per_chunk+sinoused[0],numslices),1) ) else: if axis=='proj': start, end = y * num_proj_per_chunk, np.minimum((y + 1) * num_proj_per_chunk,numprojused) tomo = dxchange.reader.read_hdf5(tempfilenames[curtemp],'/tmp/tmp',slc=((start,end,1),(0,numslices,1),(0,numrays,1))) #read in intermediate file else: start, end = y * num_sino_per_chunk, np.minimum((y + 1) * num_sino_per_chunk,numsinoused) tomo = dxchange.reader.read_hdf5(tempfilenames[curtemp],'/tmp/tmp',slc=((0,numangles,1),(start,end,1),(0,numrays,1))) dofunc = curfunc keepvalues = None while True: # Loop over operations to do in current chunking direction func_name = function_list[dofunc] newaxis = slice_dir[func_name] if newaxis != 'both' and newaxis != axis: # We have to switch axis, so flush to disk if y==0: try: os.remove(tempfilenames[1-curtemp]) except OSError: pass appendaxis = 1 if axis=='sino' else 0 dxchange.writer.write_hdf5(tomo,fname=tempfilenames[1-curtemp],gname='tmp',dname='tmp',overwrite=False,appendaxis=appendaxis) #writing intermediate file... break print(func_name, end=" ") curtime = time.time() if func_name == 'remove_outlier1d': tomo = tomo.astype(np.float32,copy=False) remove_outlier1d(tomo, outlier_diff1D, size=outlier_size1D, out=tomo) if func_name == 'remove_outlier2d': tomo = tomo.astype(np.float32,copy=False) tomopy.remove_outlier(tomo, outlier_diff2D, size=outlier_size2D, axis=0, out=tomo) elif func_name == 'normalize_nf': tomo = tomo.astype(np.float32,copy=False) tomopy.normalize_nf(tomo, flat, dark, floc_independent, out=tomo) #use floc_independent b/c when you read file in proj chunks, you don't get the correct floc returned right now to use here. elif func_name == 'normalize': tomo = tomo.astype(np.float32,copy=False) tomopy.normalize(tomo, flat, dark, out=tomo) elif func_name == 'minus_log': mx = np.float32(0.00000000000000000001) ne.evaluate('where(tomo>mx, tomo, mx)', out=tomo) tomopy.minus_log(tomo, out=tomo) elif func_name == 'beam_hardening': loc_dict = {'a{}'.format(i):np.float32(val) for i,val in enumerate(BeamHardeningCoefficients)} tomo = ne.evaluate('a0 + a1*tomo + a2*tomo**2 + a3*tomo**3 + a4*tomo**4 + a5*tomo**5', local_dict=loc_dict, out=tomo) elif func_name == 'remove_stripe_fw': tomo = tomopy.remove_stripe_fw(tomo, sigma=ringSigma, level=ringLevel, pad=True, wname=ringWavelet) elif func_name == 'remove_stripe_ti': tomo = tomopy.remove_stripe_ti(tomo, nblock=ringNBlock, alpha=ringAlpha) elif func_name == 'remove_stripe_sf': tomo = tomopy.remove_stripe_sf(tomo, size=ringSize) elif func_name == 'correcttilt': if tiltcenter_slice is None: tiltcenter_slice = numslices/2. if tiltcenter_det is None: tiltcenter_det = tomo.shape[2]/2 new_center = tiltcenter_slice - 0.5 - sinoused[0] center_det = tiltcenter_det - 0.5 #add padding of 10 pixels, to be unpadded right after tilt correction. This makes the tilted image not have zeros at certain edges, which matters in cases where sample is bigger than the field of view. For the small amounts we are generally tilting the images, 10 pixels is sufficient. # tomo = tomopy.pad(tomo, 2, npad=10, mode='edge') # center_det = center_det + 10 cntr = (center_det, new_center) for b in range(tomo.shape[0]): tomo[b] = st.rotate(tomo[b], correcttilt, center=cntr, preserve_range=True, order=1, mode='edge', clip=True) #center=None means image is rotated around its center; order=1 is default, order of spline interpolation # tomo = tomo[:, :, 10:-10] elif func_name == 'do_360_to_180': # Keep values around for processing the next chunk in the list keepvalues = [angularrange, numangles, projused, num_proj_per_chunk, numprojchunks, numprojused, numrays, anglelist] #why -.5 on one and not on the other? if tomo.shape[0]%2>0: tomo = sino_360_to_180(tomo[0:-1,:,:], overlap=int(np.round((tomo.shape[2]-cor-.5))*2), rotation='right') angularrange = angularrange/2 - angularrange/(tomo.shape[0]-1) else: tomo = sino_360_to_180(tomo[:,:,:], overlap=int(np.round((tomo.shape[2]-cor))*2), rotation='right') angularrange = angularrange/2 numangles = int(numangles/2) projused = (0,numangles-1,1) num_proj_per_chunk = np.minimum(chunk_proj,projused[1]-projused[0]) numprojchunks = (projused[1]-projused[0]-1)//num_proj_per_chunk+1 numprojused = (projused[1]-projused[0])//projused[2] numrays = tomo.shape[2] anglelist = anglelist[:numangles] elif func_name == 'phase_retrieval': tomo = tomopy.retrieve_phase(tomo, pixel_size=pxsize, dist=propagation_dist, energy=kev, alpha=alphaReg, pad=True) elif func_name == 'translation_correction': tomo = linear_translation_correction(tomo,dx=xshift,dy=yshift,interpolation=False): elif func_name == 'recon_mask': tomo = tomopy.pad(tomo, 2, npad=npad, mode='edge') if projIgnoreList is not None: for badproj in projIgnoreList: tomo[badproj] = 0 rec = tomopy.recon(tomo, anglelist, center=cor+npad, algorithm='gridrec', filter_name='butterworth', filter_par=[butterworth_cutoff, butterworth_order]) rec = rec[:, npad:-npad, npad:-npad] rec /= pxsize # convert reconstructed voxel values from 1/pixel to 1/cm rec = tomopy.circ_mask(rec, 0) elif func_name == 'polar_ring': rec = np.ascontiguousarray(rec, dtype=np.float32) rec = tomopy.remove_ring(rec, theta_min=Rarc, rwidth=Rmaxwidth, thresh_max=Rtmax, thresh=Rthr, thresh_min=Rtmin,out=rec) elif func_name == 'castTo8bit': rec = convert8bit(rec, cast8bit_min, cast8bit_max) elif func_name == 'bilateral_filter': rec = pyF3D.run_BilateralFilter(rec, spatialRadius=bilateral_srad, rangeRadius=bilateral_rrad) elif func_name == 'write_output': dxchange.write_tiff_stack(rec, fname=filenametowrite, start=y*num_sino_per_chunk + sinoused[0]) print('(took {:.2f} seconds)'.format(time.time()-curtime)) dofunc+=1 if dofunc==len(function_list): break if y<niter-1 and keepvalues: # Reset original values for next chunk angularrange, numangles, projused, num_proj_per_chunk, numprojchunks, numprojused, numrays, anglelist = keepvalues curtemp = 1 - curtemp curfunc = dofunc if curfunc==len(function_list): break axis = slice_dir[function_list[curfunc]] print("cleaning up temp files") for tmpfile in tempfilenames: try: os.remove(tmpfile) except OSError: pass print("End Time: "+time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.localtime())) print('It took {:.3f} s to process {}'.format(time.time()-start_time,inputPath+filename))
# Read the APS 32-ID or 2-BM raw data prj, flat, dark = tomopy.io.exchange.read_aps_32id(fname, sino=(start, end)) # Set the data collection angles as equally spaced between 0-180 degrees theta = tomopy.angles(prj.shape[0], ang1=0, ang2=180) # Normalize the raw projection data prj = tomopy.normalize(prj, flat, dark) # Set the aprox rotation axis location. # This parameter is the starting angle for auto centering routine start_center=295 print "Start Center: ", start_center # Auto centering calc_center = tomopy.find_center(prj, theta, emission=False, ind=0, init=start_center, tol=0.3) print "Calculated Center:", calc_center # Recon using gridrec rec = tomopy.recon(prj, theta, center=calc_center, algorithm='gridrec', emission=False) # Mask each reconstructed slice with a circle rec = tomopy.circ_mask(rec, axis=0, ratio=0.8) # to save the reconstructed images uncomment and customize the following line: rec_name = 'rec/tooth' # Write data as stack of TIFs. tomopy.io.writer.write_tiff_stack(rec, fname=rec_name) print "Done! reconstructions at: ", rec_name
def tomo_reconstruction(sino, refine_cen=False, cen_range=None, center=None, method=None, algorithm_A=None, algorithm_B=None, omega=None): ''' INPUT -> sino : slice, x, 2th OUTPUT -> tomo : slice, x, y ''' method, center, omega, algorithm_A, algorithm_B = check_parameters( sino, method, center, omega, algorithm_A, algorithm_B) if method is None: print('No tomographic reconstruction packages available') return if method.lower().startswith('scikit') and HAS_scikit: tomo = [] npts = sino.shape[1] cntr = int( npts - center) # flip axis for compatibility with tomopy convention if refine_cen: if cen_range is None: cen_range = 12 rng = int(cen_range) if cen_range > 0 and cen_range < 21 else 12 npts = sino.shape[1] cen_list, negentropy = [], [] for cen in np.arange(cntr - rng, cntr + rng, 1, dtype=int): xslice = slice(npts - 2 * cen, -1) if cen < npts / 2. else slice( 0, npts - 2 * cen) recon = iradon(sino[0, xslice], theta=omega, filter=algorithm_A, interpolation=algorithm_B, circle=True) recon = recon - recon.min() + 0.005 * (recon.max() - recon.min()) negentropy += [(recon * np.log(recon)).sum()] cen_list += [cen] center = cen_list[np.array(negentropy).argmin()] xslice = slice(npts - 2 * cntr, -1) if cntr < npts / 2. else slice( 0, npts - 2 * cntr) for sino0 in sino: tomo += [ iradon(sino0[xslice], theta=omega, filter=algorithm_A, interpolation=algorithm_B, circle=True) ] tomo = np.flip(tomo, 1) center = (npts - cntr ) / 1. # flip axis for compatibility with tomopy convention elif method.lower().startswith('tomopy') and HAS_tomopy: ## reorder to: 2th,slice,x for tomopy sino = np.einsum('jki->ijk', np.einsum('kji->ijk', sino).T) if refine_cen: center = tomopy.find_center(sino, np.radians(omega), init=center, ind=0, tol=0.5) tomo = tomopy.recon(sino, np.radians(omega), center=center, algorithm=algorithm_A) #, # filter_name=algorithm_B) ## reorder to slice, x, y tomo = np.flip(tomo, 1) return center, tomo # def registerLarchPlugin(): # return ('_tomo', {'create_tomogrp': create_tomogrp}) # # # def registerLarchGroups(): # return (tomogrp)
def recon( filename, inputPath='./', outputPath=None, outputFilename=None, doOutliers1D=False, # outlier removal in 1d (along sinogram columns) outlier_diff1D=750, # difference between good data and outlier data (outlier removal) outlier_size1D=3, # radius around each pixel to look for outliers (outlier removal) doOutliers2D=False, # outlier removal, standard 2d on each projection outlier_diff2D=750, # difference between good data and outlier data (outlier removal) outlier_size2D=3, # radius around each pixel to look for outliers (outlier removal) doFWringremoval=True, # Fourier-wavelet ring removal doTIringremoval=False, # Titarenko ring removal doSFringremoval=False, # Smoothing filter ring removal ringSigma=3, # damping parameter in Fourier space (Fourier-wavelet ring removal) ringLevel=8, # number of wavelet transform levels (Fourier-wavelet ring removal) ringWavelet='db5', # type of wavelet filter (Fourier-wavelet ring removal) ringNBlock=0, # used in Titarenko ring removal (doTIringremoval) ringAlpha=1.5, # used in Titarenko ring removal (doTIringremoval) ringSize=5, # used in smoothing filter ring removal (doSFringremoval) doPhaseRetrieval=False, # phase retrieval alphaReg=0.0002, # smaller = smoother (used for phase retrieval) propagation_dist=75, # sample-to-scintillator distance (phase retrieval) kev=24, # energy level (phase retrieval) butterworth_cutoff=0.25, #0.1 would be very smooth, 0.4 would be very grainy (reconstruction) butterworth_order=2, # for reconstruction doPolarRing=False, # ring removal Rarc=30, # min angle needed to be considered ring artifact (ring removal) Rmaxwidth=100, # max width of rings to be filtered (ring removal) Rtmax=3000.0, # max portion of image to filter (ring removal) Rthr=3000.0, # max value of offset due to ring artifact (ring removal) Rtmin=-3000.0, # min value of image to filter (ring removal) cor=None, # center of rotation (float). If not used then cor will be detected automatically corFunction='pc', # center of rotation function to use - can be 'pc', 'vo', or 'nm' voInd=None, # index of slice to use for cor search (vo) voSMin=-40, # min radius for searching in sinogram (vo) voSMax=40, # max radius for searching in sinogram (vo) voSRad=10, # search radius (vo) voStep=0.5, # search step (vo) voRatio=2.0, # ratio of field-of-view and object size (vo) voDrop=20, # drop lines around vertical center of mask (vo) nmInd=None, # index of slice to use for cor search (nm) nmInit=None, # initial guess for center (nm) nmTol=0.5, # desired sub-pixel accuracy (nm) nmMask=True, # if True, limits analysis to circular region (nm) nmRatio=1.0, # ratio of radius of circular mask to edge of reconstructed image (nm) nmSinoOrder=False, # if True, analyzes in sinogram space. If False, analyzes in radiograph space use360to180=False, # use 360 to 180 conversion doBilateralFilter=False, # if True, uses bilateral filter on image just before write step # NOTE: image will be converted to 8bit if it is not already bilateral_srad=3, # spatial radius for bilateral filter (image will be converted to 8bit if not already) bilateral_rrad=30, # range radius for bilateral filter (image will be converted to 8bit if not already) castTo8bit=False, # convert data to 8bit before writing cast8bit_min=-10, # min value if converting to 8bit cast8bit_max=30, # max value if converting to 8bit useNormalize_nf=False, # normalize based on background intensity (nf) chunk_proj=100, # chunk size in projection direction chunk_sino=100, # chunk size in sinogram direction npad=None, # amount to pad data before reconstruction projused=None, #should be slicing in projection dimension (start,end,step) sinoused=None, #should be sliceing in sinogram dimension (start,end,step). If first value is negative, it takes the number of slices from the second value in the middle of the stack. correcttilt=0, #tilt dataset tiltcenter_slice=None, # tilt center (x direction) tiltcenter_det=None, # tilt center (y direction) angle_offset=0, #this is the angle offset from our default (270) so that tomopy yields output in the same orientation as previous software (Octopus) anglelist=None, #if not set, will assume evenly spaced angles which will be calculated by the angular range and number of angles found in the file. if set to -1, will read individual angles from each image. alternatively, a list of angles can be passed. doBeamHardening=False, #turn on beam hardening correction, based on "Correction for beam hardening in computed tomography", Gabor Herman, 1979 Phys. Med. Biol. 24 81 BeamHardeningCoefficients=None, #6 values, tomo = a0 + a1*tomo + a2*tomo^2 + a3*tomo^3 + a4*tomo^4 + a5*tomo^5 projIgnoreList=None, #projections to be ignored in the reconstruction (for simplicity in the code, they will not be removed and will be processed as all other projections but will be set to zero absorption right before reconstruction. *args, **kwargs): start_time = time.time() print("Start {} at:".format(filename) + time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.localtime())) outputPath = inputPath if outputPath is None else outputPath outputFilename = filename if outputFilename is None else outputFilename tempfilenames = [outputPath + 'tmp0.h5', outputPath + 'tmp1.h5'] filenametowrite = outputPath + '/rec' + filename.strip( ".h5") + '/' + outputFilename #filenametowrite = outputPath+'/rec'+filename+'/'+outputFilename print("cleaning up previous temp files", end="") for tmpfile in tempfilenames: try: os.remove(tmpfile) except OSError: pass print(", reading metadata") datafile = h5py.File(inputPath + filename, 'r') gdata = dict(dxchange.reader._find_dataset_group(datafile).attrs) pxsize = float(gdata['pxsize']) / 10 # /10 to convert unites from mm to cm numslices = int(gdata['nslices']) numangles = int(gdata['nangles']) angularrange = float(gdata['arange']) numrays = int(gdata['nrays']) npad = int(np.ceil(numrays * np.sqrt(2)) - numrays) // 2 if npad is None else npad projused = (0, numangles - 1, 1) if projused is None else projused # ndark = int(gdata['num_dark_fields']) # ind_dark = list(range(0, ndark)) # group_dark = [numangles - 1] inter_bright = int(gdata['i0cycle']) nflat = int(gdata['num_bright_field']) ind_flat = list(range(0, nflat)) if inter_bright > 0: group_flat = list(range(0, numangles, inter_bright)) if group_flat[-1] != numangles - 1: group_flat.append(numangles - 1) elif inter_bright == 0: group_flat = [0, numangles - 1] else: group_flat = None ind_tomo = list(range(0, numangles)) floc_independent = dxchange.reader._map_loc(ind_tomo, group_flat) #figure out the angle list (a list of angles, one per projection image) dtemp = datafile[list(datafile.keys())[0]] fltemp = list(dtemp.keys()) firstangle = float(dtemp[fltemp[0]].attrs.get('rot_angle', 0)) if anglelist is None: #the offset angle should offset from the angle of the first image, which is usually 0, but in the case of timbir data may not be. #we add the 270 to be inte same orientation as previous software used at bl832 angle_offset = 270 + angle_offset - firstangle anglelist = tomopy.angles(numangles, angle_offset, angle_offset - angularrange) elif anglelist == -1: anglelist = np.zeros(shape=numangles) for icount in range(0, numangles): anglelist[icount] = np.pi / 180 * (270 + angle_offset - float( dtemp[fltemp[icount]].attrs['rot_angle'])) #if projused is different than default, need to chnage numangles and angularrange #can't do useNormalize_nf and doOutliers2D at the same time, or doOutliers2D and doOutliers1D at the same time, b/c of the way we chunk, for now just disable that if useNormalize_nf == True and doOutliers2D == True: useNormalize_nf = False print( "we cannot currently do useNormalize_nf and doOutliers2D at the same time, turning off useNormalize_nf" ) if doOutliers2D == True and doOutliers1D == True: doOutliers1D = False print( "we cannot currently do doOutliers1D and doOutliers2D at the same time, turning off doOutliers1D" ) #figure out how user can pass to do central x number of slices, or set of slices dispersed throughout (without knowing a priori the value of numslices) if sinoused is None: sinoused = (0, numslices, 1) elif sinoused[0] < 0: sinoused = ( int(np.floor(numslices / 2.0) - np.ceil(sinoused[1] / 2.0)), int(np.floor(numslices / 2.0) + np.floor(sinoused[1] / 2.0)), 1) num_proj_per_chunk = np.minimum(chunk_proj, projused[1] - projused[0]) numprojchunks = (projused[1] - projused[0] - 1) // num_proj_per_chunk + 1 num_sino_per_chunk = np.minimum(chunk_sino, sinoused[1] - sinoused[0]) numsinochunks = (sinoused[1] - sinoused[0] - 1) // num_sino_per_chunk + 1 numprojused = (projused[1] - projused[0]) // projused[2] numsinoused = (sinoused[1] - sinoused[0]) // sinoused[2] BeamHardeningCoefficients = ( 0, 1, 0, 0, 0, .1) if BeamHardeningCoefficients is None else BeamHardeningCoefficients if cor is None: print("Detecting center of rotation", end="") if angularrange > 300: lastcor = int(np.floor(numangles / 2) - 1) else: lastcor = numangles - 1 #I don't want to see the warnings about the reader using a deprecated variable in dxchange with warnings.catch_warnings(): warnings.simplefilter("ignore") tomo, flat, dark, floc = dxchange.read_als_832h5( inputPath + filename, ind_tomo=(0, lastcor)) tomo = tomo.astype(np.float32) if useNormalize_nf: tomopy.normalize_nf(tomo, flat, dark, floc, out=tomo) else: tomopy.normalize(tomo, flat, dark, out=tomo) if corFunction == 'vo': # same reason for catching warnings as above with warnings.catch_warnings(): warnings.simplefilter("ignore") cor = tomopy.find_center_vo(tomo, ind=voInd, smin=voSMin, smax=voSMax, srad=voSRad, step=voStep, ratio=voRatio, drop=voDrop) elif corFunction == 'nm': cor = tomopy.find_center( tomo, tomopy.angles(numangles, angle_offset, angle_offset - angularrange), ind=nmInd, init=nmInit, tol=nmTol, mask=nmMask, ratio=nmRatio, sinogram_order=nmSinoOrder) elif corFunction == 'pc': cor = tomopy.find_center_pc(tomo[0], tomo[1], tol=0.25) else: raise ValueError("\'corFunction\' must be one of: [ pc, vo, nm ].") print(", {}".format(cor)) else: print("using user input center of {}".format(cor)) function_list = [] if doOutliers1D: function_list.append('remove_outlier1d') if doOutliers2D: function_list.append('remove_outlier2d') if useNormalize_nf: function_list.append('normalize_nf') else: function_list.append('normalize') function_list.append('minus_log') if doBeamHardening: function_list.append('beam_hardening') if doFWringremoval: function_list.append('remove_stripe_fw') if doTIringremoval: function_list.append('remove_stripe_ti') if doSFringremoval: function_list.append('remove_stripe_sf') if correcttilt: function_list.append('correcttilt') if use360to180: function_list.append('do_360_to_180') if doPhaseRetrieval: function_list.append('phase_retrieval') function_list.append('recon_mask') if doPolarRing: function_list.append('polar_ring') if castTo8bit: function_list.append('castTo8bit') if doBilateralFilter: function_list.append('bilateral_filter') function_list.append('write_output') # Figure out first direction to slice for func in function_list: if slice_dir[func] != 'both': axis = slice_dir[func] break done = False curfunc = 0 curtemp = 0 while True: # Loop over reading data in certain chunking direction if axis == 'proj': niter = numprojchunks else: niter = numsinochunks for y in range(niter): # Loop over chunks print("{} chunk {} of {}".format(axis, y + 1, niter)) if curfunc == 0: with warnings.catch_warnings(): warnings.simplefilter("ignore") if axis == 'proj': tomo, flat, dark, floc = dxchange.read_als_832h5( inputPath + filename, ind_tomo=range( y * num_proj_per_chunk + projused[0], np.minimum( (y + 1) * num_proj_per_chunk + projused[0], numangles)), sino=(sinoused[0], sinoused[1], sinoused[2])) else: tomo, flat, dark, floc = dxchange.read_als_832h5( inputPath + filename, ind_tomo=range(projused[0], projused[1], projused[2]), sino=(y * num_sino_per_chunk + sinoused[0], np.minimum((y + 1) * num_sino_per_chunk + sinoused[0], numslices), 1)) else: if axis == 'proj': start, end = y * num_proj_per_chunk, np.minimum( (y + 1) * num_proj_per_chunk, numprojused) tomo = dxchange.reader.read_hdf5( tempfilenames[curtemp], '/tmp/tmp', slc=((start, end, 1), (0, numslices, 1), (0, numrays, 1))) #read in intermediate file else: start, end = y * num_sino_per_chunk, np.minimum( (y + 1) * num_sino_per_chunk, numsinoused) tomo = dxchange.reader.read_hdf5(tempfilenames[curtemp], '/tmp/tmp', slc=((0, numangles, 1), (start, end, 1), (0, numrays, 1))) dofunc = curfunc keepvalues = None while True: # Loop over operations to do in current chunking direction func_name = function_list[dofunc] newaxis = slice_dir[func_name] if newaxis != 'both' and newaxis != axis: # We have to switch axis, so flush to disk if y == 0: try: os.remove(tempfilenames[1 - curtemp]) except OSError: pass appendaxis = 1 if axis == 'sino' else 0 dxchange.writer.write_hdf5( tomo, fname=tempfilenames[1 - curtemp], gname='tmp', dname='tmp', overwrite=False, appendaxis=appendaxis) #writing intermediate file... break print(func_name, end=" ") curtime = time.time() if func_name == 'remove_outlier1d': tomo = tomo.astype(np.float32, copy=False) remove_outlier1d(tomo, outlier_diff1D, size=outlier_size1D, out=tomo) if func_name == 'remove_outlier2d': tomo = tomo.astype(np.float32, copy=False) tomopy.remove_outlier(tomo, outlier_diff2D, size=outlier_size2D, axis=0, out=tomo) elif func_name == 'normalize_nf': tomo = tomo.astype(np.float32, copy=False) tomopy.normalize_nf( tomo, flat, dark, floc_independent, out=tomo ) #use floc_independent b/c when you read file in proj chunks, you don't get the correct floc returned right now to use here. elif func_name == 'normalize': tomo = tomo.astype(np.float32, copy=False) tomopy.normalize(tomo, flat, dark, out=tomo) elif func_name == 'minus_log': mx = np.float32(0.00000000000000000001) ne.evaluate('where(tomo>mx, tomo, mx)', out=tomo) tomopy.minus_log(tomo, out=tomo) elif func_name == 'beam_hardening': loc_dict = { 'a{}'.format(i): np.float32(val) for i, val in enumerate(BeamHardeningCoefficients) } tomo = ne.evaluate( 'a0 + a1*tomo + a2*tomo**2 + a3*tomo**3 + a4*tomo**4 + a5*tomo**5', local_dict=loc_dict, out=tomo) elif func_name == 'remove_stripe_fw': tomo = tomopy.remove_stripe_fw(tomo, sigma=ringSigma, level=ringLevel, pad=True, wname=ringWavelet) elif func_name == 'remove_stripe_ti': tomo = tomopy.remove_stripe_ti(tomo, nblock=ringNBlock, alpha=ringAlpha) elif func_name == 'remove_stripe_sf': tomo = tomopy.remove_stripe_sf(tomo, size=ringSize) elif func_name == 'correcttilt': if tiltcenter_slice is None: tiltcenter_slice = numslices / 2. if tiltcenter_det is None: tiltcenter_det = tomo.shape[2] / 2 new_center = tiltcenter_slice - 0.5 - sinoused[0] center_det = tiltcenter_det - 0.5 #add padding of 10 pixels, to be unpadded right after tilt correction. This makes the tilted image not have zeros at certain edges, which matters in cases where sample is bigger than the field of view. For the small amounts we are generally tilting the images, 10 pixels is sufficient. # tomo = tomopy.pad(tomo, 2, npad=10, mode='edge') # center_det = center_det + 10 cntr = (center_det, new_center) for b in range(tomo.shape[0]): tomo[b] = st.rotate( tomo[b], correcttilt, center=cntr, preserve_range=True, order=1, mode='edge', clip=True ) #center=None means image is rotated around its center; order=1 is default, order of spline interpolation # tomo = tomo[:, :, 10:-10] elif func_name == 'do_360_to_180': # Keep values around for processing the next chunk in the list keepvalues = [ angularrange, numangles, projused, num_proj_per_chunk, numprojchunks, numprojused, numrays, anglelist ] #why -.5 on one and not on the other? if tomo.shape[0] % 2 > 0: tomo = sino_360_to_180( tomo[0:-1, :, :], overlap=int( np.round((tomo.shape[2] - cor - .5)) * 2), rotation='right') angularrange = angularrange / 2 - angularrange / ( tomo.shape[0] - 1) else: tomo = sino_360_to_180( tomo[:, :, :], overlap=int(np.round((tomo.shape[2] - cor)) * 2), rotation='right') angularrange = angularrange / 2 numangles = int(numangles / 2) projused = (0, numangles - 1, 1) num_proj_per_chunk = np.minimum(chunk_proj, projused[1] - projused[0]) numprojchunks = (projused[1] - projused[0] - 1) // num_proj_per_chunk + 1 numprojused = (projused[1] - projused[0]) // projused[2] numrays = tomo.shape[2] anglelist = anglelist[:numangles] elif func_name == 'phase_retrieval': tomo = tomopy.retrieve_phase(tomo, pixel_size=pxsize, dist=propagation_dist, energy=kev, alpha=alphaReg, pad=True) elif func_name == 'recon_mask': tomo = tomopy.pad(tomo, 2, npad=npad, mode='edge') if projIgnoreList is not None: for badproj in projIgnoreList: tomo[badproj] = 0 rec = tomopy.recon( tomo, anglelist, center=cor + npad, algorithm='gridrec', filter_name='butterworth', filter_par=[butterworth_cutoff, butterworth_order]) rec = rec[:, npad:-npad, npad:-npad] rec /= pxsize # convert reconstructed voxel values from 1/pixel to 1/cm rec = tomopy.circ_mask(rec, 0) elif func_name == 'polar_ring': rec = np.ascontiguousarray(rec, dtype=np.float32) rec = tomopy.remove_ring(rec, theta_min=Rarc, rwidth=Rmaxwidth, thresh_max=Rtmax, thresh=Rthr, thresh_min=Rtmin, out=rec) elif func_name == 'castTo8bit': rec = convert8bit(rec, cast8bit_min, cast8bit_max) elif func_name == 'bilateral_filter': rec = pyF3D.run_BilateralFilter( rec, spatialRadius=bilateral_srad, rangeRadius=bilateral_rrad) elif func_name == 'write_output': dxchange.write_tiff_stack(rec, fname=filenametowrite, start=y * num_sino_per_chunk + sinoused[0]) print('(took {:.2f} seconds)'.format(time.time() - curtime)) dofunc += 1 if dofunc == len(function_list): break if y < niter - 1 and keepvalues: # Reset original values for next chunk angularrange, numangles, projused, num_proj_per_chunk, numprojchunks, numprojused, numrays, anglelist = keepvalues curtemp = 1 - curtemp curfunc = dofunc if curfunc == len(function_list): break axis = slice_dir[function_list[curfunc]] print("cleaning up temp files") for tmpfile in tempfilenames: try: os.remove(tmpfile) except OSError: pass print("End Time: " + time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.localtime())) print('It took {:.3f} s to process {}'.format(time.time() - start_time, inputPath + filename))
plt.figure() plt.imshow(abs(FBPrec_ideal - FBPrec_error), vmin=0, vmax=1, cmap="gray") plt.colorbar(ticks=[0, 0.5, 1], orientation='vertical') plt.title('FBP reconsrtuction differences') rmse2 = np.linalg.norm(FBPrec_ideal - FBPrec_error) / np.linalg.norm(FBPrec_error) #%% print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print("Reconstructing analytical sinogram using gridrec (TomoPy)...") print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") import tomopy sinoTP = np.zeros((angles_num, 1, P), dtype='float32') sinoTP[:, 0, :] = sino_an rot_center = tomopy.find_center(sinoTP, angles_rad, init=290, ind=0, tol=0.5) reconTomoPy_ideal = tomopy.recon(sinoTP, angles_rad, center=rot_center, algorithm='gridrec') sinoTP[:, 0, :] = noisy_zing_stripe reconTomoPy_noisy = tomopy.recon(sinoTP, angles_rad, center=rot_center, algorithm='gridrec') plt.figure() plt.subplot(121) plt.imshow(reconTomoPy_ideal[0, :, :], vmin=0, vmax=1, cmap="gray") plt.colorbar(ticks=[0, 0.5, 1], orientation='vertical') plt.title('Ideal reconstruction (TomoPy)')
def find_center(self, tomo, thetas, slice_index, init_center, tol, mask_bool, ratio): center = tomopy.find_center(tomo, thetas, slice_index, init_center, tol, mask_bool, ratio) return center[0]
if manual_rcen: # find rotation center manually by varying the rcen and writing back to file. Exits script when done. rcen_range = [754, 764, 0.1] tomopy.write_center(proj, theta, dpath=recodir + 'tmp/center', cen_range=rcen_range) logger.info( 'Reconstructed with varying rotation center from %g to %g in %g steps.' % (rcen_range[0], rcen_range[1], rcen_range[2])) raise SystemExit(0) if auto_rcen: rcen_tol = 0.08 logger.info('determine rotation center with tolerance: %g' % rcen_tol) rcen = tomopy.find_center(proj, theta, tol=rcen_tol) logger.info('found rotation center at %g px' % rcen) if rcen - proj.shape[2] > 20: logger.warning( 'rotation center more than 20px from projection center.') ################################ # Reduce dataset # nslice = 10 slices = [numpy.int(i * proj.shape[1] / nslice) for i in numpy.arange(1, 10)] proj = proj[:, slices, :] logger.info('reduced proj stack to {} slices at {}'.format(nslice, slices)) # or use a single slice # slicenum =750 # proj = proj[:, slicenum, :]
# Read the APS 26-ID raw data. proj, flat, metadata = dxchange.read_aps_26id(fname, ind_tomo, ind_flat, sino=(start, end)) # make the darks dark = np.zeros((1, proj.shape[1], proj.shape[2])) # Set data collection angles as equally spaced between 0-180 degrees. theta = tomopy.angles(proj.shape[0]) # Flat-field correction of raw data. proj = tomopy.normalize(proj, flat, dark) # Find rotation center. rot_center = tomopy.find_center(proj, theta, init=1024, ind=0, tol=0.5) print("Center of rotation: ", rot_center) proj = tomopy.minus_log(proj) # Reconstruct object using Gridrec algorithm. rec = tomopy.recon(proj, theta, center=rot_center, algorithm='gridrec') # Mask each reconstructed slice with a circle. rec = tomopy.circ_mask(rec, axis=0, ratio=0.95) # Write data as stack of TIFs. dxchange.write_tiff_stack(rec, fname='recon_dir/recon')
# eng = 31 # pxl = 0.325e-4 # rat = 5e-03 # rat = 1e-03 #d.phase_retrieval(dist=z, energy=eng, pixel_size=pxl, alpha=rat,padding=True) #data = tomopy.retrieve_phase(data, dist=z, energy=eng, pixel_size=pxl, alpha=rat,pad=True) #if remove_stripe2: d.stripe_removal2() if remove_stripe2: data = tomopy.remove_stripe_ti(data) #d.downsample2d(level=level) # apply binning on the data data = tomopy.downsample(data, level=level) # apply binning on the data theta = tomopy.angles(data.shape[0]) if 1: #if not best_center: d.optimize_center() if not best_center: calc_center = tomopy.find_center(data, theta, emission=False, ind=0, tol=0.3) else: #d.center=best_center/pow(2,level) # Manage the rotation center calc_center = best_center/pow(2,level) # Manage the rotation center #d.gridrec(ringWidth=RingW) # Run the reconstruction rec = tomopy.recon(data, theta, center=calc_center, algorithm='gridrec', emission=False) #d.apply_mask(ratio=1) rec = tomopy.circ_mask(rec, axis=0) # Write data as stack of TIFs. #tomopy.xtomo_writer(d.data_recon, output_name, # axis=0, # x_start=slice_first) tomopy.io.writer.write_tiff_stack(rec, fname=output_name, axis=0, start=slice_first)
def center(io_paras, data_paras, center_start, center_end, center_step, diag_cycle=0, mode='diag', normalize=True, stripe_removal=10, phase_retrieval=False): # Input and output datafile = io_paras.get('datafile') path2white = io_paras.get('path2white', datafile) path2dark = io_paras.get('path2dark', path2white) out_dir = io_paras.get('out_dir') diag_cent_dir = io_paras.get('diag_cent_dir', out_dir+"/center_diagnose/") recon_dir = io_paras.get('recon_dir', out_dir+"/recon/") out_prefix = io_paras.get('out_prefix', "recon_") # Parameters of dataset NumCycles = data_paras.get('NumCycles', 1) # Number of cycles used for recon ProjPerCycle = data_paras.get('ProjPerCycle') # Number of projections per cycle, N_theta cycle_offset = data_paras.get('cycle_offset', 0) # Offset in output cycle number proj_start = data_paras.get('proj_start', 0) # Starting projection of reconstruction proj_step = data_paras.get('proj_step') z_start = data_paras.get('z_start', 0) z_end = data_paras.get('z_end', z_start+1) z_step = data_paras.get('z_step') x_start = data_paras.get('x_start') x_end = data_paras.get('x_end', x_start+1) x_step = data_paras.get('x_step') white_start = data_paras.get('white_start') white_end = data_paras.get('white_end') dark_start = data_paras.get('dark_start') dark_end = data_paras.get('dark_end') # Set start and end of each subcycle projections_start = diag_cycle * ProjPerCycle + proj_start projections_end = projections_start + ProjPerCycle slice1 = slice(projections_start, projections_end, proj_step) slice2 = slice(z_start, z_end, z_step) slice3 = slice(x_start, x_end, x_step) slices = (slice1, slice2, slice3) white_slices = (slice(white_start, white_end), slice2, slice3) dark_slices = (slice(dark_start, dark_end), slice2, slice3) print("Running center diagnosis (projs %s to %s)" % (projections_start, projections_end)) # Read HDF5 file. print("Reading datafile %s..." % datafile, end="") sys.stdout.flush() data, white, dark = reader.read_aps_2bm(datafile, slices, white_slices, dark_slices, path2white=path2white, path2dark=path2dark) theta = gen_theta(data.shape[0]) print("Done!") print("Data shape = %s;\nwhite shape = %s;\ndark shape = %s." % (data.shape, white.shape, dark.shape)) ## Normalize dataset using data_white and data_dark if normalize: data = tomopy.normalize(data, white, dark, cutoff=None, ncore=_ncore, nchunk=None) ## Remove stripes caused by dead pixels in the detector if stripe_removal: data = tomopy.remove_stripe_fw(data, level=stripe_removal, wname='db5', sigma=2, pad=True, ncore=None, nchunk=None) # data = tomopy.remove_stripe_ti(data, nblock=0, alpha=1.5, # ncore=None, nchunk=None) # # Show preprocessed projection # plt.figure("%s-prep" % projections_start) # plt.imshow(d.data[0,:,:], cmap=cm.Greys_r) # plt.savefig(out_dir+"/preprocess/%s-prep.jpg" # % projections_start) # # plt.show() # continue ## Phase retrieval if phase_retrieval: data = tomopy.retrieve_phase(data, pixel_size=6.5e-5, dist=33, energy=30, alpha=1e-3, pad=True, ncore=_ncore, nchunk=None) ## Determine and set the center of rotation ### Using optimization method to automatically find the center # d.optimize_center() if 'opti' in mode: print("Optimizing center ...", end="") sys.stdout.flush() rot_center = tomopy.find_center(data, theta, ind=None, emission=True, init=None, tol=0.5, mask=True, ratio=1.) print("Done!") print("center = %s" % rot_center) ### Output the reconstruction results using a range of centers, ### and then manually find the optimal center. if 'diag' in mode: if not os.path.exists(diag_cent_dir): os.makedirs(diag_cent_dir) print("Testing centers ...", end="") sys.stdout.flush() tomopy.write_center(data, theta, dpath=diag_cent_dir, cen_range=[center_start, center_end, center_step], ind=None, emission=False, mask=False, ratio=1.) print("Done!")
end = 16 # APS 26-ID has an x-radia system collecting raw data as xrm. proj, flat, metadata = dxchange.read_aps_26id(fname, ind_tomo, ind_flat, sino=(start, end)) # make the darks dark = np.zeros((1, proj.shape[1], proj.shape[2])) # Set data collection angles as equally spaced between 0-180 degrees. theta = tomopy.angles(proj.shape[0]) # Flat-field correction of raw data. proj = tomopy.normalize(proj, flat, dark) # Find rotation center. rot_center = tomopy.find_center(proj, theta, init=1024, ind=0, tol=0.5) print("Center of rotation: ", rot_center) proj = tomopy.minus_log(proj) # Reconstruct object using Gridrec algorithm. rec = tomopy.recon(proj, theta, center=rot_center, algorithm='gridrec') # Mask each reconstructed slice with a circle. rec = tomopy.circ_mask(rec, axis=0, ratio=0.95) # Write data as stack of TIFs. dxchange.write_tiff_stack(rec, fname='recon_dir/recon')
proj, flat, dark = tomopy.read_anka_tomotopo(fname, ind_tomo, ind_flat, ind_dark, sino=(start, end)) # Set data collection angles as equally spaced between 0-180 degrees. theta = tomopy.angles(proj.shape[0]) # Flat-field correction of raw data. proj = tomopy.normalize(proj, flat, dark) # Find rotation center. rot_center = tomopy.find_center(proj, theta, emission=False, init=1024, ind=0, tol=0.5) print("Center of rotation: ", rot_center) # Reconstruct object using Gridrec algorithm. rec = tomopy.recon(proj, theta, center=rot_center, algorithm='gridrec', emission=False) # Mask each reconstructed slice with a circle. rec = tomopy.circ_mask(rec, axis=0, ratio=0.95) # Write data as stack of TIFs.
"""Capstone Project: Write your own script! In this file, write your own reconstruction script to do the following: 1. Load a dataset using dxchange. 2. Use the find center function to find the rotation center. """ import tomopy import dxchange if __name__ == '__main__': data, flat, dark, theta = dxchange.read_aps_32id( fname='activities/data/data-simulated.h5') print(tomopy.find_center(tomo=data, theta=theta, ind=5, tol=0.1))