def pre_val_to_train(self, train_vect_in_path, val_in_path):
        """

        :param train_vect_in_path:
        :param val_in_path:
        :return:
        """
        train_vect = utils.load_pickle(train_vect_in_path)
        val_vect = utils.load_pickle(val_in_path)
        n = 1280
        train_vect = train_vect + val_vect[n:]
        val_vect = val_vect[:n]

        utils.save_pickle(train_vect, train_vect_in_path)
        utils.save_pickle(val_vect, val_in_path)
    def fetch_val_batch(self, caption_data_path, image_data_path, batch_size):
        """

        :param caption_data_path:
        :param image_data_path:
        :param batch_size:
        :return:
        """
        captions = utils.load_pickle(caption_data_path)
        val_data_count = len(captions)
        if TrainingArg.check_test:
            val_data_count = batch_size
            print('WARNING: CHECK TEST MODEL NOW')
        start = 0
        end = batch_size
        for item in range(0, val_data_count, batch_size):
            temp = captions[start:end]
            caption_batch = []
            image_batch = []
            for x in temp:
                caption_batch.append(x['caption'])
                image_batch.append(x['image_id'])
            try:
                image_batch = self.pre_data_with_vgg19(image_data_path,
                                                       image_batch)
            except Exception as e:
                print('load image failed: {}-{}, cause {}'.format(
                    start, end, e))
                start += batch_size
                end += batch_size
                continue
            start += batch_size
            end += batch_size
            yield caption_batch, image_batch
Esempio n. 3
0
    def __init__(self):
        self.word_to_idx = utils.load_pickle(Const.vocab_path)
        self.model = CaptionGenerator(self.word_to_idx,
                                      dim_feature=[196, 512],
                                      dim_embed=512,
                                      dim_hidden=1024,
                                      n_time_step=33,
                                      prev2out=True,
                                      ctx2out=True,
                                      alpha_c=1.0,
                                      selector=True,
                                      dropout=True)

        self.n_epochs = TrainingArg.n_epochs
        self.batch_size = TrainingArg.batch_size
        self.update_rule = TrainingArg.update_rule
        self.learning_rate = TrainingArg.learning_rate
        self.print_bleu = TrainingArg.print_bleu
        self.print_every = TrainingArg.print_every
        self.save_every = TrainingArg.save_every
        self.log_path = TrainingArg.log_path
        self.model_path = TrainingArg.model_path
        self.pretrained_model = TrainingArg.pretrained_model
        self.test_model = TrainingArg.test_model
        self.max_words_len = 35

        self.pre_mgr = PreData(vgg19_path=TrainingArg.vgg19_path)  # 数据管理
    def __init__(self):
        self.word_to_idx = utils.load_pickle(Const.vocab_path)
        self.model = CaptionGenerator(self.word_to_idx,
                                      dim_feature=[196, 512],
                                      dim_embed=512,
                                      dim_hidden=1024,
                                      n_time_step=33,
                                      prev2out=True,
                                      ctx2out=True,
                                      alpha_c=1.0,
                                      selector=True,
                                      dropout=True)

        self.n_epochs = TrainingArg.n_epochs
        self.batch_size = TrainingArg.batch_size
        self.update_rule = TrainingArg.update_rule
        self.learning_rate = TrainingArg.learning_rate
        self.print_bleu = TrainingArg.print_bleu
        self.print_every = TrainingArg.print_every
        self.save_every = TrainingArg.save_every
        self.log_path = TrainingArg.log_path  # FLAGS.log_dir
        self.model_path = TrainingArg.model_path  # FLAGS.output_dir  # TrainingArg.model_path
        self.data_dir = Const.resize_train_out_path  # FLAGS.data_dir
        self.pretrained_model = TrainingArg.pretrained_model
        self.test_model = TrainingArg.test_model
        self.max_words_len = 35

        self.pre_mgr = PreData(vgg19_path=TrainingArg.vgg19_path)  # 数据管理

        # set an optimizer by update rule
        if self.update_rule == 'adam':
            self.optimizer = tf.train.AdamOptimizer
        elif self.update_rule == 'momentum':
            self.optimizer = tf.train.MomentumOptimizer
        elif self.update_rule == 'rmsprop':
            self.optimizer = tf.train.RMSPropOptimizer

        if not os.path.exists(self.model_path):
            os.makedirs(self.model_path)
        if not os.path.exists(self.log_path):
            os.makedirs(self.log_path)

        self.org_decoded = {}
        self.val_data_flag = False
    def fetch_batch(self, caption_data_path, image_data_path, batch_size,
                    epochs):
        """

        :param caption_data_path:
        :param image_data_path:
        :param batch_size:
        :param epochs:
        :return:
        """
        captions = utils.load_pickle(caption_data_path)
        self.train_data_count = len(captions)

        for epoch in range(4, epochs):
            start = 0
            end = batch_size
            random.shuffle(captions)
            for item in range(0, self.train_data_count, batch_size):
                temp = captions[start:end]
                random.shuffle(temp)
                if epoch < 5:
                    cap_index = epoch % 5
                else:
                    cap_index = random.randint(0, 4)
                caption_batch = []
                image_batch = []
                for x in temp:
                    caption_batch.append(x['caption'][cap_index])
                    image_batch.append(x['image_id'])
                try:
                    image_batch = self.pre_data_with_vgg19(
                        image_data_path, image_batch)
                except Exception as e:
                    print('load image failed: {}-{}, cause {}'.format(
                        start, end, e))
                    start += batch_size
                    end += batch_size
                    continue
                start += batch_size
                end += batch_size
                yield caption_batch, image_batch, epoch
 def load_vocab(self, vocab_path):
     """
     
     :return: 
     """
     return utils.load_pickle(vocab_path)