def predict_proba(self, pairs, features):
     features = np.array([feature+[1] for feature in features])
     probs = [0.0 for i in xrange(len(features))]
     for i in xrange(len(features)):
         feature = features[i]
         if pairs[i][self.field_for_model_num] not in self.val_map_model:
             lr_val = logisticVal(self.global_para, feature)
         else:
             model_idx = self.val_map_model[pairs[i][self.field_for_model_num]]
             lr_val = logisticVal(self.model_para[model_idx], feature)
         probs[i] = lr_val
     return probs
 def predict(self, pairs, features):
     features = np.array([feature+[1] for feature in features])
     targets = [0 for i in xrange(len(features))]
     for i in xrange(len(features)):
         feature = features[i]
         if pairs[i][self.field_for_model_num] not in self.val_map_model:
             lr_val = logisticVal(self.global_para, feature)
         else:
             model_idx = self.val_map_model[pairs[i][self.field_for_model_num]]
             lr_val = logisticVal(self.model_para[model_idx], feature)
         if lr_val > 0.5:
             targets[i] = 1
     return targets
Esempio n. 3
0
 def predict_proba(self, pairs, features):
     features = np.array([feature + [1] for feature in features])
     probs = [0.0 for i in xrange(len(features))]
     for i in xrange(len(features)):
         feature = features[i]
         if pairs[i][self.field_for_model_num] not in self.val_map_model:
             lr_val = logisticVal(self.global_para, feature)
         else:
             model_idx = self.val_map_model[pairs[i][
                 self.field_for_model_num]]
             lr_val = logisticVal(self.model_para[model_idx], feature)
         probs[i] = lr_val
     return probs
Esempio n. 4
0
 def predict(self, pairs, features):
     features = np.array([feature + [1] for feature in features])
     targets = [0 for i in xrange(len(features))]
     for i in xrange(len(features)):
         feature = features[i]
         if pairs[i][self.field_for_model_num] not in self.val_map_model:
             lr_val = logisticVal(self.global_para, feature)
         else:
             model_idx = self.val_map_model[pairs[i][
                 self.field_for_model_num]]
             lr_val = logisticVal(self.model_para[model_idx], feature)
         if lr_val > 0.5:
             targets[i] = 1
     return targets
 def stochasticGraidentDescent(self, feature, target, model_idx):
     lr_val = logisticVal(self.model_para[model_idx], feature)
     avg_model_para = np.mean(self.model_para, 0)
     self.model_para[model_idx] = self.model_para[model_idx]\
             + self.lr*(target*feature-lr_val*feature
             - self.C*self.model_para[model_idx]
             - self.eta*(self.model_para[model_idx]-avg_model_para))
Esempio n. 6
0
 def stochasticGraidentDescent(self, feature, target, model_idx):
     lr_val = logisticVal(self.model_para[model_idx], feature)
     avg_model_para = np.mean(self.model_para, 0)
     self.model_para[model_idx] = self.model_para[model_idx]\
             + self.lr*(target*feature-lr_val*feature
             - self.C*self.model_para[model_idx]
             - self.eta*(self.model_para[model_idx]-avg_model_para))
 def calLossVal(self):
     correct_num = 0
     for i in xrange(self.nInstance):
         feature = self.features[i]
         target = self.targets[i]
         if self.pairs[i][self.field_for_model_num] in self.val_map_model:
             model_idx = self.val_map_model[self.pairs[i][self.field_for_model_num]]
             lr_val = logisticVal(self.model_para[model_idx], feature)
             if np.abs(lr_val-0.5)*target>0:
                 correct_num += 1
     return 1-1.0*correct_num/self.nInstance
Esempio n. 8
0
 def calLossVal(self):
     correct_num = 0
     for i in xrange(self.nInstance):
         feature = self.features[i]
         target = self.targets[i]
         if self.pairs[i][self.field_for_model_num] in self.val_map_model:
             model_idx = self.val_map_model[self.pairs[i][
                 self.field_for_model_num]]
             lr_val = logisticVal(self.model_para[model_idx], feature)
             if np.abs(lr_val - 0.5) * target > 0:
                 correct_num += 1
     return 1 - 1.0 * correct_num / self.nInstance
 def calLikelihood(self):
     #pred_prob = np.array([0.0 for i in xrange(self.nInstance)])
     loglikelihood = 0.0
     for i in xrange(self.nInstance):
         feature = self.features[i]
         target = self.targets[i]
         if self.pairs[i][self.field_for_model_num] in self.val_map_model:
             model_idx = self.val_map_model[self.pairs[i][self.field_for_model_num]]
             pred_prob = logisticVal(self.model_para[model_idx], feature)
             if target == 1:
                 loglikelihood += np.log(pred_prob)
             else:
                 loglikelihood += np.log(1-pred_prob)
     #loglikelihood = np.dot(np.log(pred_prob).reshape(1, self.nInstance), self.targets)\
     #        + np.dot(np.log(1-pred_prob).reshape(1, self.nInstance), 1-self.targets)
     return loglikelihood
Esempio n. 10
0
 def calLikelihood(self):
     #pred_prob = np.array([0.0 for i in xrange(self.nInstance)])
     loglikelihood = 0.0
     for i in xrange(self.nInstance):
         feature = self.features[i]
         target = self.targets[i]
         if self.pairs[i][self.field_for_model_num] in self.val_map_model:
             model_idx = self.val_map_model[self.pairs[i][
                 self.field_for_model_num]]
             pred_prob = logisticVal(self.model_para[model_idx], feature)
             if target == 1:
                 loglikelihood += np.log(pred_prob)
             else:
                 loglikelihood += np.log(1 - pred_prob)
     #loglikelihood = np.dot(np.log(pred_prob).reshape(1, self.nInstance), self.targets)\
     #        + np.dot(np.log(1-pred_prob).reshape(1, self.nInstance), 1-self.targets)
     return loglikelihood