Esempio n. 1
0
    def __call__(self, f: NativeFunction) -> Optional[str]:
        if Variant.method not in f.variants:
            return None

        assert not f.func.is_out_fn()
        assert f.func.arguments.self_arg is not None

        name = cpp.name(f.func)

        sig_group = CppSignatureGroup.from_native_function(
            f, method=True, fallback_binding=f.manual_cpp_binding)

        if self.target is Target.DECLARATION:
            result = f"{sig_group.signature.decl()} const;\n"
            if sig_group.faithful_signature is not None:
                result += f"{sig_group.faithful_signature.decl()} const;\n"
            return result

        if self.target is not Target.DEFINITION:
            assert_never(self.target)

        def generate_defn(faithful: bool) -> str:
            dispatcher_sig = DispatcherSignature.from_schema(f.func)

            if faithful:
                sig = sig_group.faithful_signature
                assert sig is not None
            else:
                sig = sig_group.signature

            dispatcher_exprs = translate(sig.arguments(),
                                         dispatcher_sig.arguments(),
                                         method=True)
            dispatcher_exprs_str = ', '.join(a.expr for a in dispatcher_exprs)

            static_dispatch_block = static_dispatch(
                f, sig, method=True, backend=self.static_dispatch_backend)
            if static_dispatch_block is None:
                return f"""
// aten::{f.func}
{sig.defn(prefix="Tensor::")} const {{
    static auto op = c10::Dispatcher::singleton()
        .findSchemaOrThrow("aten::{f.func.name.name}", "{f.func.name.overload_name}")
        .typed<{dispatcher_sig.type()}>();
    return op.call({dispatcher_exprs_str});
}}
"""
            else:
                return f"""
// aten::{f.func}
{sig.defn(prefix="Tensor::")} const {{
    {static_dispatch_block}
}}
"""

        result = generate_defn(faithful=False)
        if sig_group.faithful_signature is not None:
            result += generate_defn(faithful=True)

        return result
Esempio n. 2
0
def process_function(f: NativeFunction) -> Optional[str]:
    name = cpp.name(f.func)
    has_tensor_options = python.has_tensor_options(f)
    is_factory = has_tensor_options or name.endswith("_like")

    if Variant.function not in f.variants or not is_factory:
        return None

    sig = CppSignatureGroup.from_native_function(f, method=False).signature
    formals: List[str] = []
    exprs: List[str] = []
    requires_grad = 'false'
    for arg in sig.arguments():
        qualified_type = fully_qualified_type(arg.type)
        if arg.default:
            formals.append(f'{qualified_type} {arg.name} = {arg.default}')
        else:
            formals.append(f'{qualified_type} {arg.name}')

        if isinstance(arg.argument, TensorOptionsArguments):
            # note: we remove the requires_grad setting from the TensorOptions because
            # it is ignored anyways (and we actually have an assertion that it isn't set
            # which would fail otherwise). We handle requires_grad explicitly here
            # instead of passing it through to the kernel.
            exprs.append(f'at::TensorOptions({arg.name}).requires_grad(c10::nullopt)')
            # Manually set the requires_grad bit on the result tensor.
            requires_grad = f'{arg.name}.requires_grad()'
        else:
            exprs.append(arg.name)

    return f"""\
Esempio n. 3
0
def static_dispatch(f: NativeFunction, cpp_sig: CppSignature, *, method: bool,
                    backend: Optional[DispatchKey]) -> Optional[str]:
    if backend is None or f.manual_kernel_registration:
        return None

    target_sig = CppSignatureGroup.from_native_function(
        f, method=False, fallback_binding=False).signature
    name = target_sig.name()
    exprs = translate(cpp_sig.arguments(),
                      target_sig.arguments(),
                      method=method)
    exprs_str = ', '.join(a.expr for a in exprs)

    if f.structured_delegate is not None:
        # TODO: for ops with structured_delegate it should check the dispatch table of
        # the out variant instead. For now, these structured ops all have CPU/CUDA kernels
        # so we always dispatch to the `backend`, but this could be wrong when we
        # migrate math/default_backend ops to use structured delegate.
        return f'return at::{backend.lower()}::{name}({exprs_str});'

    for dispatch_key in (backend, DispatchKey.CompositeExplicitAutograd,
                         DispatchKey.CompositeImplicitAutograd):
        if dispatch_key in f.dispatch:
            return f'return at::{dispatch_key.lower()}::{name}({exprs_str});'

    return f'TORCH_CHECK(false, "Static dispatch does not support {name} for {backend}.");'
Esempio n. 4
0
    def __call__(self, f: NativeFunction) -> str:
        if not self.selector.is_native_function_selected(f):
            return ""
        # We unconditionally generate function wrappers,
        sig_group = CppSignatureGroup.from_native_function(
            f, method=False
        )

        sig = sig_group.most_faithful_signature()

        # escape double quote in schema, get rid of extra double quotes
        schema = cpp_string(str(sig.func))[1:-1]

        # arguments
        args = sig.arguments()
        connector = ",\n\t\t"
        args_code = []
        for arg in args:
            if not arg.default:
                arg_cpp = "c10::IValue(c10::nullopt)"
            elif arg.default.startswith('{'):
                arg_cpp = f"c10::IntArrayRef({arg.default})"
            else:
                arg_cpp = f"c10::IValue({arg.default})"
            args_code.append(f"""c10::Argument("{arg.name}", nullptr, c10::nullopt, {arg_cpp})""")

        returns = f.func.returns
        returns_code = []
        for ret in returns:
            returns_code.append(f"""c10::Argument("{ret.name if ret.name else ""}")""")
        return f"""
def emit_trace_body(f: NativeFunction) -> List[str]:
    trace_body: List[str] = []

    trace_body.append(format_prerecord_trace(f))
    trace_body.append(declare_returned_variables(f))

    dispatcher_sig = DispatcherSignature.from_schema(f.func)
    dispatcher_exprs = dispatcher_sig.exprs()

    # code-generated tracing kernels plumb and recompute dispatch keys directly through the kernel for performance.
    # See Note [Plumbing Keys Through The Dispatcher] for details.
    dispatch_key_set = 'ks & c10::DispatchKeySet(c10::DispatchKeySet::FULL_AFTER, c10::DispatchKey::Tracer)'
    redispatch_args = ', '.join([dispatch_key_set] + [a.expr for a in dispatcher_exprs])

    assign_return_values = f'{tie_return_values(f)} = ' \
                           if f.func.kind() == SchemaKind.functional and f.func.returns else ''

    # Note that this calls the slow, dispatching variants of manual_cpp_binding ops.
    # We could probably work harder to ensure that the fast variants are called instead, but the perf benefit would be minimal.
    sig_group = CppSignatureGroup.from_native_function(f, method=False, fallback_binding=f.manual_cpp_binding)
    if sig_group.faithful_signature is not None:
        api_name = sig_group.faithful_signature.name()
    else:
        api_name = sig_group.signature.name()

    trace_body.append(TRACE_DISPATCH.substitute(
        assign_return_values=assign_return_values,
        api_name=api_name,
        unpacked_args=redispatch_args,
    ))

    trace_body.append(format_postrecord_trace(f))
    if f.func.returns:
        trace_body.append(f'return {get_return_value(f)};')
    return trace_body
Esempio n. 6
0
    def callImpl(self, f: NativeFunction) -> str:
        name = cpp.name(f.func)

        sig_group = CppSignatureGroup.from_native_function(f, method=False, fallback_binding=f.manual_cpp_binding)

        if self.target is Target.DECLARATION:
            sig_str = sig_group.signature.decl(is_redispatching_fn=self.is_redispatching_fn)
            result = f"TORCH_API {sig_str};\n"
            if sig_group.faithful_signature is not None:
                sig_str = sig_group.faithful_signature.decl(is_redispatching_fn=self.is_redispatching_fn)
                result += f"TORCH_API {sig_str};\n"
            return result

        if self.target is not Target.DEFINITION:
            assert_never(self.target)

        def generate_defn(faithful: bool) -> str:
            dispatcher_sig = DispatcherSignature.from_schema(f.func)

            if faithful and sig_group.faithful_signature is not None:
                sig = sig_group.faithful_signature
            else:
                sig = sig_group.signature

            dispatcher_exprs = translate(sig.arguments(), dispatcher_sig.arguments())
            if self.is_redispatching_fn:
                dispatcher_exprs_str = ', '.join(['dispatchKeySet'] + [a.expr for a in dispatcher_exprs])
                dispatcher_call = 'redispatch'
            else:
                dispatcher_exprs_str = ', '.join(a.expr for a in dispatcher_exprs)
                dispatcher_call = 'call'

            static_dispatch_block = static_dispatch(f, sig, method=False, backend_index=self.static_dispatch_backend_index)
            if static_dispatch_block is None:
                return f"""
// aten::{f.func}
{sig.defn(is_redispatching_fn=self.is_redispatching_fn)} {{
    static auto op = c10::Dispatcher::singleton()
        .findSchemaOrThrow("aten::{f.func.name.name}", "{f.func.name.overload_name}")
        .typed<{dispatcher_sig.type()}>();
    return op.{dispatcher_call}({dispatcher_exprs_str});
}}
"""
            else:
                return f"""
// aten::{f.func}
{sig.defn(is_redispatching_fn=self.is_redispatching_fn)} {{
    {static_dispatch_block}
}}
"""
        result = generate_defn(sig_group.faithful_signature is None)
        if sig_group.faithful_signature is not None:
            result += generate_defn(True)

        return result
Esempio n. 7
0
 def signature_original(f: NativeFunction) -> str:
     # remove inplace suffix but keep outplace suffix
     opname = str(f.func.name.name.base)
     if f.func.is_out_fn():
         opname += '_out'
     if f.func.name.name.inplace and pyi:
         opname += '_'
     args = CppSignatureGroup.from_native_function(f, method=False).signature.arguments()
     # Simply ignore TensorOptionsArguments as it does not exist in deprecated.yaml.
     types = ', '.join(argument_type_str(a.argument.type)
                       for a in args if isinstance(a.argument, Argument))
     return f'{opname}({types})'
Esempio n. 8
0
    def __call__(self, f: NativeFunction) -> Optional[str]:
        if Variant.method not in f.variants:
            return None

        assert not f.func.is_out_fn()
        assert f.func.arguments.self_arg is not None

        sig_group = CppSignatureGroup.from_native_function(f, method=True, fallback_binding=f.manual_cpp_binding)

        if self.target is Target.DECLARATION:
            result = f"{sig_group.signature.decl()} const;\n"
            if sig_group.faithful_signature is not None:
                result += f"{sig_group.faithful_signature.decl()} const;\n"
            return result

        if self.target is not Target.DEFINITION:
            assert_never(self.target)

        def generate_defn(faithful: bool) -> str:
            if faithful:
                sig = sig_group.faithful_signature
                assert sig is not None
            else:
                sig = sig_group.signature

            target_sig = DispatcherSignature.from_schema(f.func)
            exprs = translate(sig.arguments(), target_sig.arguments(), method=True)
            exprs_str = ', '.join([e.expr for e in exprs])

            static_dispatch_block = static_dispatch(f, sig, method=True, backend_index=self.static_dispatch_backend_index)
            if static_dispatch_block is None:
                return f"""
// aten::{f.func}
inline {sig.defn(prefix="Tensor::")} const {{
    return at::_ops::{f.func.name.unambiguous_name()}::call({exprs_str});
}}
"""
            else:
                return f"""
// aten::{f.func}
inline {sig.defn(prefix="Tensor::")} const {{
    {static_dispatch_block}
}}
"""

        result = generate_defn(faithful=False)
        if sig_group.faithful_signature is not None:
            result += generate_defn(faithful=True)

        return result
Esempio n. 9
0
def emit_inplace_or_view_body(
        fn: NativeFunctionWithDifferentiabilityInfo) -> List[str]:
    f = fn.func
    inplace_view_body: List[str] = []

    dispatcher_sig = DispatcherSignature.from_schema(f.func)
    dispatcher_exprs = dispatcher_sig.exprs()

    # code-generated InplaceOrView kernels plumb and recompute dispatch keys directly through the kernel for performance.
    # See Note [Plumbing Keys Through The Dispatcher] for details.
    dispatch_key_set = 'ks & c10::after_InplaceOrView_keyset'
    redispatch_args = ', '.join([dispatch_key_set] +
                                [a.expr for a in dispatcher_exprs])

    # Note that this calls the slow, dispatching variants of manual_cpp_binding ops.
    # We could probably work harder to ensure that the fast variants are called instead, but the perf benefit would be minimal.
    sig_group = CppSignatureGroup.from_native_function(
        f, method=False, fallback_binding=f.manual_cpp_binding)
    if sig_group.faithful_signature is not None:
        api_name = sig_group.faithful_signature.name()
    else:
        api_name = sig_group.signature.name()
    inplace_view_body.append(THROW_IF_VARIABLETYPE_ON)
    if modifies_arguments(f):  # inplace op
        inplace_view_body.append(
            INPLACE_REDISPATCH.substitute(
                api_name=api_name,
                unpacked_args=redispatch_args,
            ))
        for r in cpp.return_names(f):
            inplace_view_body.append(f'increment_version({r});')
    else:
        assert (get_view_info(fn) is not None)
        inplace_view_body.append(
            VIEW_REDISPATCH.substitute(
                assign_return_values='auto ' + TMP_VAR + ' = ',
                api_name=api_name,
                unpacked_args=redispatch_args,
            ))
        call, rhs_value = emit_view_body(fn, TMP_VAR)
        inplace_view_body.append(call)
        assert rhs_value is not None
        inplace_view_body.append(
            ASSIGN_RETURN_VALUE.substitute(return_values=tie_return_values(f),
                                           rhs_value=rhs_value))
    if f.func.returns:
        inplace_view_body.append(f'return {get_return_value(f)};')
    return inplace_view_body
Esempio n. 10
0
    def __call__(self, f: NativeFunction) -> str:
        if not self.selector.is_native_function_selected(f):
            return ""

        if self.target is Target.DECLARATION:
            # Note [The ATen Codegen Unboxing API]
            # Similar to the ATen Operators API, ATen Codegen Unboxing API lives in the at::unboxing namespace, and
            # will be used by codegen unboxing wrappers (CodegenUnboxingWrappers.cpp).
            # The Wrappers will be registered into torch::jit::OperatorRegistry using RegisterOperators API.
            #
            # Important characteristics about the Codegen Unboxing API:
            # (1) It follows the OperatorRegistry API.
            #     This is kind of necessary to avoid overhead.
            #     For example: if it followed the C++ API, then all of the faithful C++ factory functions
            #     would need to wrap their arguments into TensorOptions only to unwrap them again.
            # (2) Under the hood it calls C++ API.
            return f"""
// aten::{f.func}
TORCH_API void {f.func.name.unambiguous_name()}(Stack & stack);
"""
        else:
            sig_group = CppSignatureGroup.from_native_function(
                f, method=(Variant.method in f.variants)
            )
            sig = sig_group.most_faithful_signature()
            # parse arguments into C++ code
            binding_list, code_list = convert_arguments(f)

            # for each C++ argument, generate the conversion code
            code_connector = "\n\t"
            arg_connector = ", "
            # function call and push back to stack
            prefix = "self_base." if sig.method else "at::"
            translated_args = translate(binding_list, sig.arguments(), method=sig.method)
            args_str = f"{arg_connector.join(e.expr for e in translated_args)}"
            if len(f.func.returns) == 0:
                ret_str = ""
                push_str = ""
            else:
                ret_str = "auto result_ = "
                push_str = """
    pack(stack, std::move(result_));
                """
            return f"""
Esempio n. 11
0
def convert_arguments(f: NativeFunction) -> Tuple[List[Binding], List[str]]:
    # we need the 'self' argument so method needs to be False
    args = CppSignatureGroup.from_native_function(
        f, method=False).most_faithful_signature().arguments()
    code_list = [
        f"c10::IValue {args[i].name} = std::move(peek(stack, {i}, {len(args)}));"
        for i in range(len(args))
    ] + [""]
    binding_list = []
    for i, arg in enumerate(args):
        # expecting only Argument
        if not isinstance(arg.argument, Argument):
            raise Exception(
                f"Unexpected argument type, expecting `Argument` but got {arg}"
            )
        argument: Argument = arg.argument
        unboxed_name, _, code, decl = argumenttype_ivalue_convert(
            argument.type, argument.name, mutable=argument.is_write)
        code_list.extend(decl)
        code_list.extend(code)
        binding_list.append(arg.with_name(unboxed_name))
    return binding_list, code_list
Esempio n. 12
0
    def __call__(self, f: NativeFunction) -> Optional[str]:
        if Variant.function not in f.variants:
            return None

        sig_group = CppSignatureGroup.from_native_function(f, method=False, fallback_binding=f.manual_cpp_binding)

        def generate_defn(faithful: bool) -> str:
            if faithful:
                sig = sig_group.faithful_signature
                assert sig is not None
            else:
                sig = sig_group.signature

            # See Note [The ATen Operators API]
            target_sig = DispatcherSignature.from_schema(f.func)
            exprs = translate(sig.arguments(), target_sig.arguments())
            exprs_str = ', '.join([e.expr for e in exprs])

            static_dispatch_block = static_dispatch(f, sig, method=False, backend_index=self.static_dispatch_backend_index)
            if static_dispatch_block is None:
                return f"""
// aten::{f.func}
TORCH_API inline {sig.decl()} {{
    return at::_ops::{f.func.name.unambiguous_name()}::call({exprs_str});
}}
"""
            else:
                return f"""
// aten::{f.func}
TORCH_API inline {sig.decl()} {{
    {static_dispatch_block}
}}
"""
        result = generate_defn(False)
        if sig_group.faithful_signature is not None:
            result += generate_defn(True)

        return result
Esempio n. 13
0
def compute_declaration_yaml(f: NativeFunction) -> object:
    returns, name_to_field_name = compute_returns_yaml(f)

    # These sets are used to conveniently test if an argument is a
    # kwarg-only or out argument
    kwarg_only_set = set(a.name for a in f.func.arguments.flat_kwarg_only)
    out_arg_set = set(a.name for a in f.func.arguments.out)

    sig_group = CppSignatureGroup.from_native_function(f,
                                                       method=False,
                                                       fallback_binding=False)
    cpp_args = sig_group.signature.arguments()
    arguments = [
        compute_cpp_argument_yaml(cpp_a,
                                  schema_order=False,
                                  kwarg_only_set=kwarg_only_set,
                                  out_arg_set=out_arg_set,
                                  name_to_field_name=name_to_field_name)
        for cpp_a in cpp_args
    ]

    schema_order_jit_arguments = list(f.func.schema_order_arguments())

    schema_order_arguments = [
        compute_argument_yaml(a,
                              schema_order=True,
                              kwarg_only_set=kwarg_only_set,
                              out_arg_set=out_arg_set,
                              name_to_field_name=name_to_field_name)
        for a in schema_order_jit_arguments
    ]

    cpp_schema_order_types = [
        # NB: method here doesn't matter
        r.type for a in schema_order_jit_arguments
        for r in cpp.argument(a,
                              method=False,
                              cpp_no_default_args=set(),
                              faithful=False,
                              has_tensor_options=False)
    ]

    cpp_returns = cpp.returns_type(f.func.returns).cpp_type()
    schema_order_cpp_signature = f"{cpp_returns} ({', '.join(cpp_schema_order_types)})"

    is_factory_method = any(isinstance(a.argument, TensorOptionsArguments) for a in cpp_args) \
        and Variant.method not in f.variants

    return OrderedDict([
        ('name', cpp.name(f.func)),
        ('operator_name', str(f.func.name.name)),
        ('overload_name', str(f.func.name.overload_name)),
        ('manual_kernel_registration', f.manual_kernel_registration),
        ('category_override',
         f.category_override if f.category_override is not None else ''),
        ('schema_string', f'aten::{f.func}'),
        ('arguments', arguments),
        ('schema_order_cpp_signature', schema_order_cpp_signature),
        ('schema_order_arguments', schema_order_arguments),
        ('method_of', compute_method_of_yaml(f.variants)),
        ('mode', 'native'),
        ('python_module', '' if f.python_module is None else f.python_module),
        ('returns', returns),
        ('inplace', f.func.name.name.inplace),
        ('is_factory_method', is_factory_method),
        ('abstract', f.is_abstract),
        ('device_guard', f.device_guard),
        ('with_gil', False),
        ('deprecated', False),
        ('has_math_kernel', DispatchKey.CompositeImplicitAutograd
         in f.dispatch),
    ])
Esempio n. 14
0
    def gen_unstructured(self, f: NativeFunction) -> Optional[str]:
        inplace_meta = False
        if self.dispatch_key not in f.dispatch:
            if (self.dispatch_key == DispatchKey.Meta
                    and f.func.kind() is SchemaKind.inplace and
                    # Defer to composites for meta implementation
                    DispatchKey.CompositeImplicitAutograd not in f.dispatch
                    and DispatchKey.CompositeExplicitAutograd not in f.dispatch
                    and
                    # Inplace list operations are not supported
                    len(f.func.returns) == 1):
                inplace_meta = True
            else:
                return None
        if f.manual_kernel_registration:
            return None

        if self.target is Target.REGISTRATION and not self.selector.is_native_function_selected(
                f):
            return None

        sig = NativeSignature(f.func, prefix='wrapper_')

        name = sig.name()
        returns_type = sig.returns_type().cpp_type()
        args = sig.arguments()
        args_str = ', '.join(a.defn() for a in args)

        # See Note [Direct dispatch bindings]
        cpp_sig_group = CppSignatureGroup.from_native_function(
            f, method=False, fallback_binding=False)

        if self.target is Target.NAMESPACED_DECLARATION:
            result = f"TORCH_API {cpp_sig_group.signature.decl()};\n"
            if cpp_sig_group.faithful_signature is not None:
                result += f"TORCH_API {cpp_sig_group.faithful_signature.decl()};\n"
            return result
        elif self.target is Target.NAMESPACED_DEFINITION:

            def generate_defn(cpp_sig: CppSignature) -> str:
                return f"""
{cpp_sig.defn()} {{
return {sig.name()}({', '.join(e.expr for e in translate(cpp_sig.arguments(), sig.arguments()))});
}}
"""

            result = generate_defn(cpp_sig_group.signature)
            if cpp_sig_group.faithful_signature is not None:
                result += generate_defn(cpp_sig_group.faithful_signature)
            return result
        elif self.target is Target.ANONYMOUS_DEFINITION:
            # short circuit for inplace_meta
            if inplace_meta:
                assert f.func.arguments.self_arg is not None
                self_arg_name = f.func.arguments.self_arg.argument.name
                # TODO: handle in place on tensor list
                return f"""
{returns_type} {name}({args_str}) {{
  TORCH_CHECK_NOT_IMPLEMENTED({self_arg_name}.is_meta(),
    "Cannot inplace into non-meta tensor with meta tensor argument");
  return {self_arg_name};
}}
"""

            impl_name = f"at::native::{f.dispatch[self.dispatch_key]}"

            args_exprs_str = ', '.join(a.name for a in args)

            device_guard = "// DeviceGuard omitted"  # default

            if f.device_guard and is_cuda_dispatch_key(self.dispatch_key):
                has_tensor_options = any(
                    isinstance(a.argument, TensorOptionsArguments)
                    for a in args)
                if has_tensor_options:
                    # kernel is creating a tensor
                    device_guard = """globalContext().lazyInitCUDA();
  const DeviceGuard device_guard(device_or_default(device));"""
                else:
                    # kernel is operating on existing tensors

                    # There is precedence for which argument we use to do
                    # device guard.  This describes the precedence order.
                    self_arg = [
                        f.func.arguments.self_arg.argument
                    ] if f.func.arguments.self_arg is not None else []
                    candidate_args = itertools.chain(
                        self_arg, f.func.arguments.out,
                        f.func.arguments.flat_positional)

                    # Only tensor like arguments are eligible
                    device_of = next(
                        (f'{a.name}'
                         for a in candidate_args if a.type.is_tensor_like()),
                        None)
                    if device_of is not None:
                        device_guard = f"const OptionalDeviceGuard device_guard(device_of({device_of}));"

            return f"""\
namespace {{

{returns_type} {name}({args_str}) {{
  {device_guard}
  return {impl_name}({args_exprs_str});
}}

}} // anonymous namespace
"""

        elif self.target is Target.REGISTRATION:
            if f.manual_kernel_registration:
                return None
            else:
                dispatcher_sig = DispatcherSignature.from_schema(f.func)
                payload = f"TORCH_FN({name})"
                return f'm.impl("{f.func.name}",\n{payload});\n'
        else:
            assert_never(self.target)
        def gen_unstructured_external(
                f: ExternalBackendFunction) -> Optional[str]:
            if not requires_backend_wrapper(f):
                return None

            def get_device_param(args: List[Argument]) -> str:
                # TODO: the XLA codegen has specific precedence rules when determining which tensor argument
                # to use as the device argument.
                # We should update this to be consistent with how we choose device guards.
                const_tensor_or_self = [
                    a for a in args
                    if (a.type == BaseType(BaseTy.Tensor)
                        or a.type == OptionalType(BaseType(BaseTy.Tensor)))
                    and not a.is_write
                ]
                if any(const_tensor_or_self):
                    return const_tensor_or_self[0].name
                tensor_like = [a for a in args if a.type.is_tensor_like()]
                if any(tensor_like):
                    return tensor_like[0].name
                device_like = [
                    a for a in args if a.type == BaseType(BaseTy.Device)
                    or a.type == OptionalType(BaseType(BaseTy.Device))
                ]
                if any(device_like):
                    return device_like[0].name
                raise AssertionError(
                    "Need a tensor-like or device argument in order to determine the output device"
                )

            # XLA appears to have used the dispatcher convention to write their kernel signatures,
            # probably because they based their signatures off of our RegistrationDeclarations.h
            dispatcher_sig = DispatcherSignature.from_schema(
                f.native_function.func)
            name = dispatcher_sig.name()
            args = dispatcher_sig.arguments()

            if self.target is Target.NAMESPACED_DECLARATION:
                return f"  static {dispatcher_sig.decl()};"

            elif self.target is Target.REGISTRATION:
                if f.metadata is not None:
                    # xla has their own kernel: register it
                    namespace = 'AtenXlaType'
                else:
                    # xla doesn't have a kernel: register the cpu fallback (or codegen'd out kernel).
                    namespace = 'AtenXlaTypeDefault'
                payload = f"static_cast<{dispatcher_sig.ptr_type()}>(&{namespace}::{name})"
                return f'  m.impl("{f.native_function.func.name}", {payload});\n'

            if self.target is not Target.NAMESPACED_DEFINITION:
                assert_never(self.target)

            # Instead of generating a CPU fallback, the xla codegen generates out wrappers for a few hardcoded operators.
            # TODO: we should generate out wrappers for ALL valid out kernels; not just ones in xla's hardcoded list
            if f.native_function.func.kind() is SchemaKind.out and str(f.native_function.func.name.name) in _FN_OUT \
                    and isinstance(g, ExternalBackendFunctionsGroup):
                return gen_out_wrapper(g)

            # Everything below here is where we generate the CPU fallback.
            dispatcher_order_args = dispatcher.jit_arguments(
                f.native_function.func)

            # Map each argument to it's intermediate variable name in the fallback
            # We have to do it separately for TensorList/Optional<Tensor>/Tensor
            tensorlist_args: Dict[Argument, str] = {
                a: f'l_{a.name}'
                for a in dispatcher_order_args if isinstance(a.type, ListType)
                and a.type.elem == BaseType(BaseTy.Tensor)
            }

            opt_tensors = [
                a for a in dispatcher_order_args
                if isinstance(a.type, OptionalType)
                and a.type.elem == BaseType(BaseTy.Tensor)
            ]
            opt_tensor_args: Dict[Argument, str] = {
                a: f'xlatens_opt[{i}]'
                for i, a in enumerate(opt_tensors)
            }

            tensors = [
                a for a in dispatcher_order_args
                if a.type == BaseType(BaseTy.Tensor)
            ]
            tensor_args: Dict[Argument, str] = {
                a: f'xlatens[{i}]'
                for i, a in enumerate(tensors)
            }
            annotated_tensor_indices: List[int] = [
                i for i, a in enumerate(tensors)
                if a.annotation is not None and a.annotation.is_write
            ]

            print_args_str = ''.join([
                f' << " {a.name}=" << {a.name}.toString()'
                for a in tensor_args.keys()
            ])

            tensorlist_intermediates_str = ''
            if len(tensorlist_args) > 0:
                tensorlist_intermediates_str = '\n'.join([
                    f'  auto {updated_name} = bridge::XlaCreateTensorList({arg.name});'
                    for arg, updated_name in tensorlist_args.items()
                ])

            opt_tensor_intermediates_str = ''
            if len(opt_tensor_args) > 0:
                arg_str = ", ".join([a.name for a in opt_tensor_args.keys()])
                opt_tensor_intermediates_str = f'\n  std::vector<c10::optional<at::Tensor>> xlatens_opt_tensors = {{{arg_str}}};'
                opt_tensor_intermediates_str += '\n  auto xlatens_opt = bridge::XlaCreateOptTensorList(xlatens_opt_tensors);'

            intermediates = ''
            if tensorlist_intermediates_str != '':
                intermediates += tensorlist_intermediates_str + '\n'
            intermediates += f"  std::vector<at::Tensor> xlatens_tensors = {{{', '.join([a.name for a in tensor_args.keys()])}}};"
            intermediates += "\n  auto xlatens = bridge::XlaCreateTensorList(xlatens_tensors);"
            if opt_tensor_intermediates_str != '':
                intermediates += opt_tensor_intermediates_str

            is_method = Variant.function not in f.native_function.variants
            func_name = f'AtenXlaTypeDefault::{name}'

            # Gather all of the updated variable names to call into the CPU operator.
            # Just use the original binding names for inputs where we didn't create explicit intermediate variables.
            updated_bindings: List[str] = [
                tensorlist_args.get(
                    a, opt_tensor_args.get(a, tensor_args.get(a, a.name)))
                for a in dispatcher_order_args
            ]

            at_call_name = CppSignatureGroup.from_native_function(
                f.native_function,
                method=is_method).most_faithful_signature().name()

            # Notice that we don't need to perform a translate: we're technically going from the dispatcher API
            # to the faithful C++ API, which are carefuly written to be exactly the same.
            cpu_result_name = 'x_result'
            if is_method:
                at_call = f'{updated_bindings[0]}.{at_call_name}({", ".join(name for name in updated_bindings[1:])});'
            else:
                at_call = f'at::{at_call_name}({", ".join(name for name in updated_bindings)});'
            avoid_warning = ''
            if f.native_function.func.returns:
                at_call = f'auto&& {cpu_result_name} = {at_call}'
                avoid_warning = f'\n  static_cast<void>({cpu_result_name}); // Avoid warnings in case not used'

            collect_mutated_tensors = ''
            update_tensors = ''
            if len(annotated_tensor_indices) > 0:
                indices_str = ", ".join(
                    [str(i) for i in annotated_tensor_indices])
                collect_mutated_tensors = f'\n  std::vector<size_t> xlatens_update_indices = {{{indices_str}}};'
                update_tensors = '\n  bridge::XlaUpdateTensors(xlatens_tensors, xlatens, xlatens_update_indices);'

            returns = ''
            if f.native_function.func.returns:
                ret_names = cpp.return_names(f.native_function,
                                             fallback_name=cpu_result_name)
                if len(ret_names) == 1:
                    returns = xla_tensor_creation_api(
                        ret_names[0],
                        f.native_function.func.returns[0],
                        get_device_param(dispatcher_order_args),
                        cpu_result_name=cpu_result_name)
                else:
                    return_args = [
                        xla_tensor_creation_api(
                            ret_names[i],
                            f.native_function.func.returns[i],
                            get_device_param(dispatcher_order_args),
                            cpu_result_name=f'std::get<{i}>({cpu_result_name})'
                        ) for i in range(len(f.native_function.func.returns))
                    ]
                    returns = f'{dispatcher_sig.returns_type().cpp_type()}({", ".join(return_args)})'
            return_str = ''
            if returns != '':
                return_str = f'\n  return {returns};'

            return f"""\
Esempio n. 16
0
def cpp_arguments(f: NativeFunction) -> Sequence[Binding]:
    return CppSignatureGroup.from_native_function(f, method=False).signature.arguments()
Esempio n. 17
0
        def gen_unstructured_external(f: NativeFunction) -> Optional[str]:
            if not requires_backend_wrapper(f, self.backend_index):
                return None

            def get_device_param(args: List[Argument]) -> str:
                # TODO: the XLA codegen has specific precedence rules when determining which tensor argument
                # to use as the device argument.
                # We should update this to be consistent with how we choose device guards.
                const_tensor_or_self = [
                    a for a in args
                    if (a.type == BaseType(BaseTy.Tensor)
                        or a.type == OptionalType(BaseType(BaseTy.Tensor)))
                    and not a.is_write
                ]
                if any(const_tensor_or_self):
                    return const_tensor_or_self[0].name
                tensor_like = [a for a in args if a.type.is_tensor_like()]
                if any(tensor_like):
                    return tensor_like[0].name
                device_like = [
                    a for a in args if a.type == BaseType(BaseTy.Device)
                    or a.type == OptionalType(BaseType(BaseTy.Device))
                ]
                if any(device_like):
                    return device_like[0].name
                raise AssertionError(
                    "Need a tensor-like or device argument in order to determine the output device"
                )

            # XLA appears to have used the dispatcher convention to write their kernel signatures,
            # probably because they based their signatures off of our RegistrationDeclarations.h
            # See Note [External Backends Follow Dispatcher API]
            dispatcher_sig = DispatcherSignature.from_schema(f.func)
            name = dispatcher_sig.name()
            args = dispatcher_sig.arguments()

            if self.target is Target.NAMESPACED_DECLARATION:
                return f"  static {dispatcher_sig.decl()};"

            elif self.target is Target.REGISTRATION:
                # This codegen is only responsible for registering CPU fallback kernels
                # We also skip registrations if there is a functional backend kernel,
                # because we generate out/inplace wrappers in that case (handled in register_dispatch_key.py).
                if self.backend_index.get_kernel(f) is not None or \
                        (isinstance(g, NativeFunctionsGroup) and gets_generated_out_inplace_wrapper(f, g, self.backend_index)):
                    return ''
                payload = f"static_cast<{dispatcher_sig.ptr_type()}>(&AtenXlaTypeDefault::{name})"
                return f'  m.impl("{f.func.name}", {payload});\n'

            if self.target is not Target.NAMESPACED_DEFINITION:
                assert_never(self.target)

            # Everything below here is where we generate the CPU fallback.
            dispatcher_order_args = dispatcher.jit_arguments(f.func)

            # Map each argument to it's intermediate variable name in the fallback
            # We have to do it separately for TensorList/Optional<Tensor>/Tensor
            tensorlist_args: Dict[Argument, str] = {
                a: f'l_{a.name}'
                for a in dispatcher_order_args if isinstance(a.type, ListType)
                and a.type.elem == BaseType(BaseTy.Tensor)
            }

            opt_tensors = [
                a for a in dispatcher_order_args
                if isinstance(a.type, OptionalType)
                and a.type.elem == BaseType(BaseTy.Tensor)
            ]
            opt_tensor_args: Dict[Argument, str] = {
                a: f'xlatens_opt[{i}]'
                for i, a in enumerate(opt_tensors)
            }

            tensors = [
                a for a in dispatcher_order_args
                if a.type == BaseType(BaseTy.Tensor)
            ]
            tensor_args: Dict[Argument, str] = {
                a: f'xlatens[{i}]'
                for i, a in enumerate(tensors)
            }
            annotated_tensor_indices: List[int] = [
                i for i, a in enumerate(tensors)
                if a.annotation is not None and a.annotation.is_write
            ]

            print_args_str = ''.join([
                f' << " {a.name}=" << {a.name}.toString()'
                for a in tensor_args.keys()
            ])

            tensorlist_intermediates_str = ''
            if len(tensorlist_args) > 0:
                tensorlist_intermediates_str = '\n'.join([
                    f'  auto {updated_name} = to_cpu({arg.name});'
                    for arg, updated_name in tensorlist_args.items()
                ])

            opt_tensor_intermediates_str = ''
            if len(opt_tensor_args) > 0:
                arg_str = ", ".join([a.name for a in opt_tensor_args.keys()])
                opt_tensor_intermediates_str = f'\n  std::vector<c10::optional<at::Tensor>> xlatens_opt_tensors = {{{arg_str}}};'
                opt_tensor_intermediates_str += '\n  auto xlatens_opt = to_cpu(xlatens_opt_tensors);'

            intermediates = ''
            if tensorlist_intermediates_str != '':
                intermediates += tensorlist_intermediates_str + '\n'
            intermediates += f"  std::vector<at::Tensor> xlatens_tensors = {{{', '.join([a.name for a in tensor_args.keys()])}}};"
            intermediates += "\n  auto xlatens = to_cpu(xlatens_tensors);"
            if opt_tensor_intermediates_str != '':
                intermediates += opt_tensor_intermediates_str

            is_method = Variant.function not in f.variants
            func_name = f'AtenXlaTypeDefault::{name}'

            # Gather all of the updated variable names to call into the CPU operator.
            # Just use the original binding names for inputs where we didn't create explicit intermediate variables.
            updated_bindings: List[str] = [
                tensorlist_args.get(
                    a, opt_tensor_args.get(a, tensor_args.get(a, a.name)))
                for a in dispatcher_order_args
            ]

            at_call_name = CppSignatureGroup.from_native_function(
                f, method=is_method).most_faithful_signature().name()

            # Notice that we don't need to perform a translate: we're technically going from the dispatcher API
            # to the faithful C++ API, which are carefuly written to be exactly the same.
            cpu_result_name = 'x_result'
            if is_method:
                at_call = f'{updated_bindings[0]}.{at_call_name}({", ".join(name for name in updated_bindings[1:])});'
            else:
                at_call = f'at::{at_call_name}({", ".join(name for name in updated_bindings)});'
            avoid_warning = ''
            if f.func.returns:
                at_call = f'auto&& {cpu_result_name} = {at_call}'
                avoid_warning = f'\n  static_cast<void>({cpu_result_name}); // Avoid warnings in case not used'

            collect_mutated_tensors = ''
            update_tensors = ''
            if len(annotated_tensor_indices) > 0:
                indices_str = ", ".join(
                    [str(i) for i in annotated_tensor_indices])
                collect_mutated_tensors = f'\n  std::vector<size_t> xlatens_update_indices = {{{indices_str}}};'
                # TODO: uncomment the resize line below. Taken out temporarily for testing
                update_tensors = '''
  for (int i : xlatens_update_indices) {
    // if (xlatens_tensors[i].sizes() != xlatens[i].sizes()) xlatens_tensors[i].resize_(xlatens[i].sizes());
    at::_copy_from_and_resize(xlatens[i], xlatens_tensors[i]);
  }
'''

            returns = ''
            if f.func.returns:
                ret_names = cpp.return_names(f, fallback_name=cpu_result_name)
                if len(ret_names) == 1:
                    returns = xla_tensor_creation_api(
                        ret_names[0],
                        f.func.returns[0],
                        get_device_param(dispatcher_order_args),
                        cpu_result_name=cpu_result_name)
                else:
                    return_args = [
                        xla_tensor_creation_api(
                            ret_names[i],
                            f.func.returns[i],
                            get_device_param(dispatcher_order_args),
                            cpu_result_name=f'std::get<{i}>({cpu_result_name})'
                        ) for i in range(len(f.func.returns))
                    ]
                    returns = f'{dispatcher_sig.returns_type().cpp_type()}({", ".join(return_args)})'
            return_str = ''
            if returns != '':
                return_str = f'\n  return {returns};'

            return f"""\
Esempio n. 18
0
 def most_faithful_name(self, f: NativeFunction) -> str:
     sig_group = CppSignatureGroup.from_native_function(f, method=False)
     sig = sig_group.most_faithful_signature()
     return sig.name()
Esempio n. 19
0
    def gen_one(self, f: NativeFunction) -> Optional[str]:
        assert not f.manual_kernel_registration

        if self.target is Target.REGISTRATION and not self.selector.is_native_function_selected(
                f):
            return None

        # TODO: Now, there is something interesting going on here.  In the code below,
        # we generate CompositeExplicitAutograd implementations of functional and inplace
        # based on the out implementation.  But in fact, out is definable by
        # functional too (just not very efficiently), and this is honestly the
        # MORE likely situation for a backend implementor.  How do we pick?
        # Well, taking a page from Haskell type classes and default methods,
        # we could conceivably register a circular definition (out in terms
        # of functional, and functional in terms of out) and just require
        # someone to implement one or the other.  We'd have to do a little bit
        # of work to not register one of these "weak" definitions unless there
        # is a strong definition somewhere in the DAG!  So it's not implemented yet.
        if self.backend_index.dispatch_key == DispatchKey.CompositeExplicitAutograd and f.func.kind(
        ) is SchemaKind.out:
            # Never generate a default implementation for out, that's what you
            # have to define as a backend implementor
            return None

        # Note [Direct dispatch bindings]
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Signature of the non-dispatched function we'll expose in a header
        # (e.g., at::cpu::add).  We don't generate methods (TODO: do this
        # when CPUTensor class is a thing); nor do we generate fallback
        # bindings for manual_cpp_binding functions.
        cpp_sig_group = CppSignatureGroup.from_native_function(
            f, method=False, fallback_binding=False)

        # Signature of the wrapper function we'll register to the dispatcher
        sig = NativeSignature(f.func, prefix="wrapper_")

        if self.target is Target.NAMESPACED_DECLARATION:
            result = f"TORCH_API {cpp_sig_group.signature.decl()};\n"
            if cpp_sig_group.faithful_signature is not None:
                result += f"TORCH_API {cpp_sig_group.faithful_signature.decl()};\n"
            return result

        elif self.target is Target.NAMESPACED_DEFINITION:

            def generate_defn(cpp_sig: CppSignature) -> str:
                return f"""
{cpp_sig.defn()} {{
return {sig.name()}({', '.join(e.expr for e in translate(cpp_sig.arguments(), sig.arguments()))});
}}
"""

            result = generate_defn(cpp_sig_group.signature)
            if cpp_sig_group.faithful_signature is not None:
                result += generate_defn(cpp_sig_group.faithful_signature)
            return result

        elif self.target is Target.ANONYMOUS_DEFINITION:

            k = f.func.kind()

            # Construct the body of the wrapper function with signature sig
            sig_body = []
            # We'll use context to keep track of any variables we've brought
            # into scope while generating code
            context: List[Union[Binding, Expr]] = list(sig.arguments())

            # Initialize the class corresponding to this structured
            # operator; feeding it the output argument(s) if it is known
            if self.backend_index.dispatch_key is DispatchKey.Meta:
                class_name = f"structured_{meta.name(self.g)}_meta_{k.name}"
                parent_class = f"at::meta::structured_{meta.name(self.g)}"
            elif self.backend_index.dispatch_key is DispatchKey.CompositeExplicitAutograd:
                # TODO: dedup this branch
                class_name = f"structured_{meta.name(self.g)}_default_backend_{k.name}"
                parent_class = f"at::meta::structured_{meta.name(self.g)}"
            else:
                metadata = self.backend_index.get_kernel(self.g)
                assert metadata is not None
                class_name = f"structured_{metadata.kernel}_{k.name}"
                parent_class = f"{self.cpp_namespace}::structured_{metadata.kernel}"

            if is_cuda_dispatch_key(self.backend_index.dispatch_key):
                device_check_args = itertools.chain(
                    f.func.arguments.out, f.func.arguments.flat_positional)
                sig_body.append(
                    RegisterDispatchKey.gen_device_check(
                        f.device_check, list(device_check_args), sig.name()))

            if k is SchemaKind.functional:
                sig_body.append(f"{class_name} op;")
            elif k is SchemaKind.inplace:
                sig_body.append(f"{class_name} op(self);")
            elif k is SchemaKind.out:
                out_args_str = ', '.join(a.name for a in f.func.arguments.out)
                sig_body.append(f"{class_name} op({out_args_str});")

            # Translate the input native arguments into structured
            # arguments for the meta call
            meta_exprs = ', '.join(e.expr for e in translate(
                context, structured.meta_arguments(self.g), method=False))

            if self.g.out.precomputed:
                # If this function group has precomputed elements, the meta function
                # returns a struct containing them which must be saved so that it
                # can be unpacked when generating code to call the impl.
                sig_body.append(f"auto precompute = op.meta({meta_exprs});")

                # Put all of the contents of the precompute struct into the context
                # so that translate will be able to return the correct args for the
                # call to the impl.
                for precomputed_elems in self.g.out.precomputed.replace.values(
                ):
                    for arg in precomputed_elems:
                        context.append(
                            Expr(
                                expr=f"precompute.{arg.name}",
                                type=structured.argument_type(arg,
                                                              binds=arg.name),
                            ))

                # Add a use of the precompute struct so FB internal compilers don't
                # complain that there is an unused variable.
                sig_body.append("(void)precompute;")
            else:
                sig_body.append(f"op.meta({meta_exprs});")

            # After running meta, op.outputs_ is guaranteed to be valid;
            # add it to the context
            out_args = structured.out_arguments(self.g)
            maybe_star = '*' if k is SchemaKind.functional else ''
            for i, out_arg in enumerate(out_args):
                assert ConstRefCType(BaseCType(tensorT)) == out_arg.nctype.type
                context.append(
                    Expr(
                        expr=f"{maybe_star}op.outputs_[{i}]",
                        # TODO: Stop hardcoding that the output type is a Tensor.  Note
                        # that for the codegen here this is fine because outputs_ is
                        # hardcoded to be tensor already
                        type=NamedCType(out_arg.nctype.name,
                                        MutRefCType(BaseCType(tensorT)))))

            # With the expanded context, do the impl call (if not a meta
            # function)
            if self.backend_index.dispatch_key == DispatchKey.CompositeExplicitAutograd:
                # TODO: https://github.com/pytorch/pytorch/issues/53023
                out_sig_group = CppSignatureGroup.from_native_function(
                    self.g.out,
                    method=False,
                    fallback_binding=f.manual_cpp_binding)
                out_sig = out_sig_group.most_faithful_signature()
                api_name = out_sig.name()
                out_exprs = ', '.join(e.expr for e in translate(
                    context, out_sig.arguments(), method=False))
                # TODO: I think this means structured won't work with method
                # only functions (but maybe you're saved by faithful? iunno.)
                # NB: Originally I wrote this as an at::redispatch call, but
                # I got in trouble because that meant I needed a DispatchKeySet
                # in the wrapper function, which meant I needed a DispatchKeySet
                # in the DispatchKeyFunctions declarations, but the defined API
                # there does NOT permit a dispatch key set.  I think you can
                # probably unwind this by calling some function to do the TLS
                # fetch and get the DispatchKeySet when you don't have it, but
                # I didn't do it for this version
                sig_body.append(f"at::{api_name}({out_exprs});")
            elif self.backend_index.dispatch_key != DispatchKey.Meta:
                impl_exprs = ', '.join(e.expr for e in translate(
                    context, structured.impl_arguments(self.g), method=False))
                sig_body.append(f"op.impl({impl_exprs});")

            # Destructively return the final tensors
            # TODO: Do this in translate instead
            if k is SchemaKind.functional:
                if len(f.func.returns) == 1:
                    ret_expr = "std::move(op.outputs_[0]).take()"  # small optimization
                else:
                    moved = ', '.join(f"std::move(op.outputs_[{i}]).take()"
                                      for i in range(len(f.func.returns)))
                    ret_expr = f"std::make_tuple({moved})"
            elif k is SchemaKind.inplace:
                ret_expr = "self"
            elif k is SchemaKind.out:
                if len(f.func.returns) == 1:
                    ret_expr = f.func.arguments.out[0].name
                else:
                    refs = ', '.join(a.name for a in f.func.arguments.out)
                    ret_expr = f"std::forward_as_tuple({refs})"
            sig_body.append(f"return {ret_expr};")

            sig_body_str = "\n".join(sig_body)

            # For an overview of what this template code looks like, see
            # https://github.com/pytorch/rfcs/pull/9
            return f"""\
{self.gen_class(
f, k,
class_name=class_name,
parent_class=parent_class,
generate_super=self.g.out.structured_inherits is not None
)}

{sig.defn()} {{
{sig_body_str}
}}
"""

        elif self.target is Target.REGISTRATION:
            return f'm.impl("{f.func.name}", TORCH_FN({sig.name()}));'
        else:
            assert_never(self.target)
            # Silence mypy's "Missing return statement" error
            return None
Esempio n. 20
0
    def gen_unstructured(
            self,
            f: NativeFunction,
            g: Optional[NativeFunctionsGroup] = None) -> Optional[str]:
        with native_function_manager(f):
            inplace_meta = False
            gets_out_inplace_wrapper = False
            if not self.backend_index.has_kernel(f):
                if (self.backend_index.dispatch_key == DispatchKey.Meta
                        and f.func.kind() is SchemaKind.inplace and
                        # Defer to composites for meta implementation
                        not f.has_composite_kernel and
                        # Inplace list operations are not supported
                        len(f.func.returns) == 1):
                    inplace_meta = True
                elif (not self.backend_index.use_out_as_primary
                      and g is not None and gets_generated_out_inplace_wrapper(
                          f, g, self.backend_index)):
                    # We want to generate inplace/out wrappers, that don't have a kernel for the backend.
                    gets_out_inplace_wrapper = True
                else:
                    return None
            if f.manual_kernel_registration:
                return None

            if self.target is Target.REGISTRATION and not self.selector.is_native_function_selected(
                    f):
                return None

            sig = self.wrapper_kernel_sig(f)

            name = sig.name()
            returns_type = sig.returns_type().cpp_type()
            args = sig.arguments()
            args_str = ', '.join(a.defn() for a in args)

            # See Note [Direct dispatch bindings]
            cpp_sig_group = CppSignatureGroup.from_native_function(
                f, method=False, fallback_binding=False)

            if self.target is Target.NAMESPACED_DECLARATION:
                result = f"TORCH_API {cpp_sig_group.signature.decl()};\n"
                if cpp_sig_group.faithful_signature is not None:
                    result += f"TORCH_API {cpp_sig_group.faithful_signature.decl()};\n"
                return result
            elif self.target is Target.NAMESPACED_DEFINITION:

                def generate_defn(cpp_sig: CppSignature) -> str:
                    return f"""
{cpp_sig.defn()} {{
return {sig.name()}({', '.join(e.expr for e in translate(cpp_sig.arguments(), sig.arguments()))});
}}
"""

                result = generate_defn(cpp_sig_group.signature)
                if cpp_sig_group.faithful_signature is not None:
                    result += generate_defn(cpp_sig_group.faithful_signature)
                return result
            elif self.target is Target.ANONYMOUS_DEFINITION:
                # short circuit for inplace_meta
                if inplace_meta:
                    assert f.func.arguments.self_arg is not None
                    self_arg_name = f.func.arguments.self_arg.argument.name
                    # TODO: handle in place on tensor list
                    return f"""
{returns_type} {name}({args_str}) {{
  TORCH_CHECK_NOT_IMPLEMENTED({self_arg_name}.is_meta(),
    "Cannot inplace into non-meta tensor with meta tensor argument");
  return {self_arg_name};
}}
"""

                # short circuit for generated inplace/out wrappers
                if gets_out_inplace_wrapper:
                    return self.gen_out_inplace_wrapper(f, g)

                metadata = self.backend_index.get_kernel(f)
                if metadata is None:
                    return None
                if self.class_method_name is None:
                    impl_name = f"{self.cpp_namespace}::{metadata.kernel}"
                else:
                    impl_name = f"{self.cpp_namespace}::{self.class_method_name}::{metadata.kernel}"

                args_exprs_str = ', '.join(a.name for a in args)

                device_check = '  // No device check\n'
                if is_cuda_dispatch_key(self.backend_index.dispatch_key):
                    device_check_args = itertools.chain(
                        f.func.arguments.out, f.func.arguments.flat_positional)
                    device_check = RegisterDispatchKey.gen_device_check(
                        f.device_check, list(device_check_args), name)

                device_guard = "// DeviceGuard omitted"  # default
                if f.device_guard and is_cuda_dispatch_key(
                        self.backend_index.dispatch_key):
                    has_tensor_options = any(
                        isinstance(a.argument, TensorOptionsArguments)
                        for a in args)
                    if has_tensor_options:
                        # kernel is creating a tensor
                        device_guard = """globalContext().lazyInitCUDA();
  const DeviceGuard device_guard(device_or_default(device));"""
                    else:
                        # kernel is operating on existing tensors

                        # There is precedence for which argument we use to do
                        # device guard.  This describes the precedence order.
                        self_arg = [
                            f.func.arguments.self_arg.argument
                        ] if f.func.arguments.self_arg is not None else []
                        candidate_args = itertools.chain(
                            self_arg, f.func.arguments.out,
                            f.func.arguments.flat_positional)

                        # Only tensor like arguments are eligible
                        device_of = next((f'{a.name}' for a in candidate_args
                                          if a.type.is_tensor_like()), None)
                        if device_of is not None:
                            device_guard = f"const OptionalDeviceGuard device_guard(device_of({device_of}));"

                return f"""\
namespace {{

{returns_type} {name}({args_str}) {{
  {device_check}

  {device_guard}
  return {impl_name}({args_exprs_str});
}}

}} // anonymous namespace
"""

            elif self.target is Target.REGISTRATION:
                if f.manual_kernel_registration:
                    return None
                else:
                    payload = f"TORCH_FN({name})"
                    return f'm.impl("{f.func.name}",\n{payload});\n'
            else:
                assert_never(self.target)