Esempio n. 1
0
def convert_t2pd_image(dicom_dir, tmp_output_dir, tmp_filename, target_path_t2,
                       target_path_pd):
    """
    Splits interleaved T2 / PD image into 2 images, using https://github.com/rordenlab/dcm2niix.
    Requires dcm2niix to be installed, e.g. `brew install dcm2niix`
    """
    # file processing
    dcm2niix_cmd = "dcm2niix -d 0 -f %s -o %s %s" % (tmp_filename,
                                                     tmp_output_dir, dicom_dir)
    args = shlex.split(dcm2niix_cmd)
    process = subprocess.Popen(args, env=config.path_environment)
    process.wait()
    print("dcm2niix_cmd terminated with return code: '%s'" %
          process.returncode)
    # file management
    if process.returncode == 0:
        tmp_path_to_T2w = os.path.join(tmp_output_dir,
                                       tmp_filename + '_e2.nii')
        if os.path.exists(tmp_path_to_T2w):
            gt.ensure_dir_exists(target_path_t2)
            shutil.move(tmp_path_to_T2w, target_path_t2)
            print("- copied T2w image: %s -> %s" %
                  (tmp_path_to_T2w, target_path_t2))
        tmp_path_to_PDw = os.path.join(tmp_output_dir,
                                       tmp_filename + '_e1.nii')
        if os.path.exists(tmp_path_to_PDw):
            gt.ensure_dir_exists(target_path_pd)
            shutil.move(tmp_path_to_PDw, target_path_pd)
            print("- copied T2w image: %s -> %s" %
                  (tmp_path_to_PDw, target_path_pd))
 def create_path(self, path_pattern_list=None, abs_path=True, create=True, **kwargs):
     if path_pattern_list:
         path = self.bids_layout.build_path(kwargs, path_pattern_list)
     else:
         path = self.bids_layout.build_path(kwargs)
     if abs_path:
         path = os.path.join(self.data_root, path)
     if create:
         gt.ensure_dir_exists(os.path.dirname(path))
     return path
def write_vtk_data(_data, _path_to_file):
    fu.ensure_dir_exists(_path_to_file)
    writer = vtk.vtkXMLDataSetWriter()
    if vtk.VTK_MAJOR_VERSION <= 5:
        writer.SetInput(_data)
    else:
        writer.SetInputData(_data)
    writer.SetFileName(_path_to_file)
    writer.Update()
    writer.Write()
    def copy_files(self, new_base_dir='.', overwrite=False,
                   file_type='any', mode='copy', **kwargs ):
        """
        copies file in new directory tree
        Try to replace by bids_layout's copy_files function in the future.
        """
        #== retrieve query results
        file_list = self.bids_layout.get(**kwargs)
        #== select for reg/no-reg
        if file_type == 'reg':
            file_list = [file.filename for file in file_list if hasattr(file, 'registration')]
        elif file_type == 'noreg':
            file_list = [file.filename for file in file_list if (not hasattr(file, 'registration'))]
        else:
            file_list = [file.filename for file in file_list]

        if not file_type=='noreg':
            print("=== WARNING: directory structure for registered files is not handled correctly -- verify results!")

        #== generate new paths
        for old_path in file_list:
            new_path_rel = self.bids_layout.build_path(old_path, self.bids_layout.path_patterns)
            new_path_abs = os.path.join(new_base_dir, new_path_rel)
            gt.ensure_dir_exists(new_path_abs)
            if mode=='copy':
                print("Preparing to copy '%s' to '%s'"%(old_path, new_path_abs))
            elif mode=='move':
                print("Preparing to move '%s' to '%s'" % (old_path, new_path_abs))
            if os.path.exists(new_path_abs):
                if overwrite:
                    os.remove(new_path_abs)
                    shutil.copy(old_path, new_path_abs)
                else:
                    print("File '%s' already exists ... skipping."%(new_path_abs))
            else:
                shutil.copy(old_path, new_path_abs)
            if mode=='move':
                os.remove(old_path)
                try:
                    os.rmdir(old_path)
                except:
                    pass

        if not file_type=='noreg':
            print("=== WARNING: directory structure for registered files is not handled correctly -- verify results!")
Esempio n. 5
0
def plot_segmentation_volumes(df,
                              subject_ids=None,
                              plot_selection=['Edema', 'EnhancingTumor'],
                              out_dir=None,
                              show=True):
    # Remove 'bratumia_' from labels
    df.columns = [col.split("_")[-1] for col in df.columns]
    # Convert units: mm^3 -> cm^3=ml
    df = df[plot_selection] / 1000.
    if subject_ids is None:
        subject_ids = df.reset_index().subject_id.unique()
    for subject_id in subject_ids:
        sel = df.loc[subject_id]
        # create plot
        fig, ax = plt.subplots(figsize=(6, 4))
        sel.plot(kind='bar', ax=ax)
        #fig.subplots_adjust(right=0.7, bottom=0.2)
        # ax.legend(bbox_to_anchor=(1.01, 1), loc='upper',
        #           ncol=1, borderaxespad=0.)
        leg = ax.legend(loc='upper center',
                        frameon=True,
                        ncol=2,
                        borderaxespad=0.5)
        leg.get_frame().set_linewidth(0.0)
        ax.set_ylabel("Volume [cm$^3$]")
        ax.set_xlabel("")
        plt.xticks(rotation=45)
        ax.set_title("Patient UPN %s" % subject_id)
        max_value = sel.max().max()
        ax.set_ylim(0, max_value + max_value * 0.2)

        if out_dir is not None:
            gt.ensure_dir_exists(out_dir)
            save_name = "UPN-%s_segmentation_volumes.png" % (subject_id)
            fig.savefig(os.path.join(out_dir, save_name), bbox_inches='tight')
        if show:
            plt.show()
        else:
            plt.clf()
Esempio n. 6
0
def convert_dcm_folder(path_to_dcm_folder,
                       path_to_output_folder,
                       file_name,
                       export_dcm=False,
                       anonymise=False,
                       overwrite=False,
                       t2pd=False):
    gt.ensure_dir_exists(path_to_output_folder)
    path_to_out_file = os.path.join(path_to_output_folder, file_name)
    print("== Converting '%s'" % path_to_dcm_folder)
    # Get & Extract Metadata
    dcm_df = pd.DataFrame()
    if export_dcm:
        try:
            #print(path_to_out_file+'.csv')
            if not os.path.exists(path_to_out_file + '.csv') or overwrite:
                print("    -- Extracting dicom metadata")
                dcm_file = os.listdir(path_to_dcm_folder)[0]
                ds = pydicom.dcmread(os.path.join(path_to_dcm_folder,
                                                  dcm_file))
                dcm_df = extract_dcm_header(ds,
                                            path_to_file=path_to_out_file,
                                            anonymise=anonymise)
        except:
            print("== Error extracting metadata for dicom folder '%s'" %
                  (path_to_dcm_folder))
    # Convert dcm to nifty
    if not t2pd:
        print("    -- Converting dicom file to NIFTI")
        try:
            path_to_out_file = path_to_out_file + '.nii'
            if not os.path.exists(path_to_out_file) or overwrite:
                gt.ensure_dir_exists(os.path.dirname(path_to_out_file))
                #img_nii = dicom2nifti.dicom_series_to_nifti(path_to_dcm_folder, path_to_out_file)
                convert_dicom_to_nii(path_to_dcm_folder, path_to_output_folder,
                                     file_name)
        except:
            print("== Error converting dicom folder '%s'" %
                  (path_to_dcm_folder))
    else:
        print("    -- Converting dicom file to NIFTI (T2wPD)")
        try:
            path_to_out_file = path_to_out_file + '.nii'
            if not os.path.exists(path_to_out_file) or overwrite:
                gt.ensure_dir_exists(os.path.dirname(path_to_out_file))
                target_path_t2 = os.path.join(path_to_output_folder,
                                              file_name + '.nii')
                pd_filename = "_".join(
                    file_name.split("_")[:-1]) + "_PDfromT2wPD.nii"
                target_path_pd = os.path.join(path_to_output_folder,
                                              pd_filename)
                path_to_dicom_folder_escaped = path_to_dcm_folder.replace(
                    ' ', '\\ ')
                convert_t2pd_image(dicom_dir=path_to_dicom_folder_escaped,
                                   tmp_output_dir=path_to_output_folder,
                                   tmp_filename=file_name,
                                   target_path_t2=target_path_t2,
                                   target_path_pd=target_path_pd)
        except:
            print("== Error converting dicom folder '%s'" %
                  (path_to_dcm_folder))

    return dcm_df
Esempio n. 7
0
def create_pd_from_dcm_dir(dcm_dir, out_dir=None):
    files_to_exclude = [
        '.raw', '.png', '.txt', '.jpg', '.jpeg', 'xls', '.nii', 'bat', 'cbf',
        'cbv', 'kep', 'ktr', 'leakage', 'r2_', 've', 'volume', 'vp', 'con_',
        'mtt', 'tif'
    ]
    df = pd.DataFrame()
    lstFilesDCM = []  # create an empty list
    for dirName, subdirList, fileList in os.walk(dcm_dir):
        print("Scanning directory '%s'." % dirName)
        cnt_file = 0
        for filename in fileList:
            print("  - processing file '%s'." % filename)
            if cnt_file < 1:
                if not any(ext in filename.lower()
                           for ext in files_to_exclude):
                    # since each folder represents 1 acquisition,
                    # we read only the first dicom file in the folder to get the folder metadata
                    path_to_file = os.path.join(dirName, filename)

                    try:
                        ds = pydicom.dcmread(path_to_file, force=True)

                        # extract info from dicom header
                        attributes = [
                            'study_description', 'study_date',
                            'series_description', 'patient_id', 'patient_name',
                            'series_instance_uid', 'study_instance_uid',
                            'patient_sex', 'patient_age', 'slice_thickness',
                            'spacing_between_slices', 'repetition_time',
                            'echo_time', 'inversion_time',
                            'mr_acquisition_type', 'sequence_variant',
                            'contrast_bolus_agent', 'protocol_name'
                        ]

                        meta_data = {}
                        for attr in attributes:
                            dcm_header_name = ''.join([
                                comp.capitalize() for comp in attr.split('_')
                            ])
                            if dcm_header_name.lower().endswith(
                                    'id'
                            ):  # correct issue with capitalisation of ID
                                dcm_header_name = dcm_header_name[:-2] + 'ID'
                            if hasattr(ds, dcm_header_name):
                                meta_data[attr] = getattr(ds, dcm_header_name)

                        lstFilesDCM.append(os.path.join(dirName, filename))
                        meta_data['path_to_dir'] = dirName
                        series = pd.Series(meta_data)
                    except:
                        print("Could not process file '%s'" % path_to_file)
                        cnt_file = cnt_file + 1

                    if hasattr(series, 'patient_id'):
                        if series.patient_id is not None:
                            df = df.append(series, ignore_index=True)
                            cnt_file = cnt_file + 1
                        else:
                            print("Did not find patient id, try again")

    # save
    if out_dir:
        gt.ensure_dir_exists(out_dir)
        df.to_excel(os.path.join(out_dir, 'data.xls'))
        df.to_pickle(os.path.join(out_dir, 'data.pkl'))
    return df
Esempio n. 8
0
def organize_files(df_seqs=None,
                   export_dcm=True,
                   overwrite=False,
                   anonymise=True):
    data_io = dio.DataIO(config.coh_dir_bids, config.path_to_coh_bids_config)
    if df_seqs is None:
        df_seqs = pd.read_pickle(
            config.coh_path_to_metadata_sequences_pkl).reset_index()

    df_seqs.orientation = df_seqs.orientation.astype(str)
    #df_seqs['subject_id'] = df_seqs.patient_id
    sel = df_seqs
    for index, row in sel.iterrows():
        # path_to_dicom_dir
        # source_dir_subject= str(row['patient_name'])
        # source_dir_study  = row['study_instance_uid']
        # source_dir_series = row['series_instance_uid']
        # path_to_dicom_dir = os.path.join(config.coh_dir_raw_data, source_dir_subject, source_dir_study, source_dir_series)
        path_to_dicom_dir = row.path_to_dir
        if row.study_date.to_datetime64() in df_seqs[
                df_seqs.upn == row.upn].study_date.sort_values().unique():
            subject_id = str(row.upn)
            session = dio.create_session_name(row.study_date)
            modality = str(row.sequence_name)
            orientation = row.orientation
            print("Processing subject '%s', %s, %s" %
                  (subject_id, session, modality))
            path_to_file = data_io.create_image_path(subject=subject_id,
                                                     session=session,
                                                     modality=modality,
                                                     create=False)
            path_to_output_folder = os.path.dirname(path_to_file)
            file_name = os.path.basename(path_to_file)
            if modality in ['T1w', 'T1wPost', 'T2w', 'T2wFLAIR'
                            ] and 'AX' in orientation:
                if row.dimension == '3D':
                    modality = modality + '-3D'
                    path_to_file = data_io.create_image_path(
                        subject=subject_id, session=session, modality=modality)
                    path_to_output_folder = os.path.dirname(path_to_file)
                    file_name = os.path.basename(path_to_file)
                print("# %s, %s, %s " %
                      (path_to_dicom_dir, path_to_file, path_to_output_folder))
                gt.ensure_dir_exists(path_to_output_folder)
                dct.convert_dcm_folder(path_to_dicom_dir,
                                       path_to_output_folder,
                                       file_name,
                                       anonymise=anonymise,
                                       export_dcm=export_dcm,
                                       overwrite=overwrite)
            elif modality in ['T2wPD']:
                print("# %s, %s, %s " %
                      (path_to_dicom_dir, path_to_file, path_to_output_folder))
                gt.ensure_dir_exists(path_to_output_folder)
                dct.convert_dcm_folder(path_to_dicom_dir,
                                       path_to_output_folder,
                                       file_name,
                                       anonymise=anonymise,
                                       export_dcm=export_dcm,
                                       overwrite=overwrite,
                                       t2pd=True)
            # elif modality in ['DWI', 'ADC', 'DSC', 'DCE']:
            elif modality in ['DCE']:
                print("# %s " % (file_name))
                check_for_output_folder(path_to_output_folder)
                dct.convert_dcm_folder(path_to_dicom_dir,
                                       path_to_output_folder,
                                       file_name,
                                       anonymise=anonymise,
                                       export_dcm=export_dcm,
                                       overwrite=overwrite)
            # elif modality in ['T1wMapFA']:
            #     file_name = file_name + "_" + row.FA
            #     print("# %s " % (file_name))
            #     gt.ensure_dir_exists(path_to_output_folder)
            #     dcm_tools.convert_dcm_folder(path_to_dicom_dir, path_to_output_folder, file_name,
            #                                 anonymise=False, export_dcm=EXPORT_DCM, overwrite=OVERWRITE)
            sel.loc[index,
                    'path_to_nii'] = os.path.join(path_to_output_folder,
                                                  file_name)
Esempio n. 9
0
def generate_bratumia_input(n_per_file=10, selection='all'):
    data_io = dio.DataIO(config.coh_dir_bids, config.path_to_coh_bids_config)
    gt.ensure_dir_exists(config.coh_dir_bratumia)
    df = pd.DataFrame()
    count = 0
    for subject_id in data_io.bids_layout.unique('subject'):
        # for subject_id in bids_rest:
        for session in data_io.bids_layout.get(target='session',
                                               subject=subject_id,
                                               processing='original',
                                               return_type='id'):
            modalities = data_io.bids_layout.get(target='modality',
                                                 subject=subject_id,
                                                 session=session,
                                                 processing='original',
                                                 return_type='id')
            print(subject_id, session, modalities)

            # create table
            df.loc[count, 'subject_id'] = subject_id
            df.loc[count, 'session'] = session
            df.loc[count, 'modalities'] = ', '.join(modalities)

            if ((('T2w' in modalities) or ('T2wPD' in modalities))
                    and ('T2wFLAIR' in modalities)
                    and (('T1w' in modalities) or ('T1w-3D' in modalities)) and
                (('T1wPost' in modalities) or ('T1wPost-3D' in modalities))):
                try:
                    # -- T1
                    if 'T1w-3D' in modalities:
                        T1_mod = 'T1w-3D'
                    elif 'T1w' in modalities:
                        T1_mod = 'T1w'
                    path_to_T1 = data_io.bids_layout.get(
                        subject=subject_id,
                        session=session,
                        modality=T1_mod,
                        processing='original',
                        extensions='nii')[0].filename
                    # -- T1c
                    if 'T1wPost-3D' in modalities:
                        T1c_mod = 'T1wPost-3D'
                    elif 'T1wPost' in modalities:
                        T1c_mod = 'T1wPost'
                    path_to_T1c = data_io.bids_layout.get(
                        subject=subject_id,
                        session=session,
                        modality=T1c_mod,
                        processing='original',
                        extensions='nii')[0].filename
                    # -- T2
                    if 'T2w' in modalities:
                        T2w_mod = 'T2w'
                    elif 'T2wPD' in modalities:
                        T2w_mod = 'T2wPD'
                    path_to_T2 = data_io.bids_layout.get(
                        subject=subject_id,
                        session=session,
                        modality=T2w_mod,
                        processing='original',
                        extensions='nii')[0].filename
                    # -- FLAIR
                    path_to_FLAIR = data_io.bids_layout.get(
                        subject=subject_id,
                        session=session,
                        modality='T2wFLAIR',
                        processing='original',
                        extensions='nii')[0].filename
                    # -- OUTFILE
                    out_path = subject_id + '_' + session
                    # -- write to file

                    df.loc[count, 'status'] = 'ready for segmentation'
                    df.loc[count, 'path_to_T1'] = path_to_T1
                    df.loc[count, 'path_to_T1c'] = path_to_T1c
                    df.loc[count, 'path_to_T2'] = path_to_T2
                    df.loc[count, 'path_to_FLAIR'] = path_to_FLAIR
                    df.loc[count, 'out_path'] = out_path
                except:
                    print("Problem identifying files")
                    df.loc[count, 'status'] = 'nii missing'
            else:
                print(
                    "Not all modalities available for subject '%s', session '%s'"
                    % (subject_id, session))
                df.loc[count, 'status'] = 'modality missing'
            # check if already segmented
            path_to_tumor_seg = data_io.create_registered_image_path(
                subject=subject_id,
                session=session,
                modality='tumorseg',
                segmentation='tumor',
                other='bratumia',
                processing='bratumia',
                extension='mha',
                create=False)
            if os.path.exists(path_to_tumor_seg):
                segmented = True
            else:
                segmented = False
            df.loc[count, 'segmented'] = segmented

            count = count + 1

    df.to_excel(config.coh_dir_scanned_for_seg_xls)
    df.to_pickle(config.coh_dir_scanned_for_seg_pkl)
    df_for_bratumia = df[~df.path_to_T1.isna()].reset_index()
    df_tb_reviewed = df[df.path_to_T1.isna()].reset_index()
    df_for_bratumia.set_index(['subject_id', 'session']).sort_index().to_excel(
        os.path.join(config.coh_dir_bratumia,
                     'files_ready_for_segmentation.xls'))
    df_tb_reviewed.set_index(['subject_id', 'session']).sort_index().to_excel(
        os.path.join(config.coh_dir_bratumia,
                     'files_to_be_reviewed_for_segmentation.xls'))

    bratumia_columns = [
        'path_to_T1', 'path_to_T1c', 'path_to_T2', 'path_to_FLAIR', 'out_path'
    ]

    if selection == 'all':
        df_sel = df_for_bratumia
    else:
        df_sel = df_for_bratumia[df_for_bratumia.segmented == False]

    df_sel[bratumia_columns].to_csv(os.path.join(config.coh_dir_bratumia,
                                                 'to_segment.csv'),
                                    index=False,
                                    header=False)

    for sublist in chunks(df_sel.subject_id.unique(), n_per_file):
        file_name = "batch_ids_" + "-".join(sublist) + ".csv"
        selection_pd = df_sel[df_sel.subject_id.isin(sublist)]
        selection_pd[bratumia_columns].to_csv(os.path.join(
            config.coh_dir_bratumia, file_name),
                                              index=False,
                                              header=False)
    print("Saved files to %s" % config.coh_dir_bratumia)
    return df_for_bratumia
Esempio n. 10
0
def check_for_output_folder(path_to_folder):
    if os.path.exists(path_to_folder):
        path_to_folder = path_to_folder + "_2"
    else:
        gt.ensure_dir_exists(path_to_folder)
Esempio n. 11
0
    'keyword': {
        'DSC': ['perfusion', 'perf'],
        'DCE': ['dce', 'dynamic'],
        'ADC': ['adc', 'apparent'],
        'DWI': ['dw'],
        'DTI': ['dti']
    },
    'FA': {
        'num': 'FA[0-9]{1,2}'
    }
}

base_dir = "/Volumes/WD-EXT_1TB_MacOS_ENC/COH_CART"
path_to_dicom = os.path.join(base_dir, "DOI")
output_dir = os.path.join(path_to_dicom, 'dataset_info')
gt.ensure_dir_exists(output_dir)

df = dcm_tools.create_pd_from_dcm_dir(dcm_dir=path_to_dicom,
                                      out_dir=output_dir)

# convert study date to date-time format
df.study_date = pd.to_datetime(df.study_date)

df = df.set_index(['patient_id', 'study_instance_uid', 'series_instance_uid'])

# identify sequence information
#df = pd.read_pickle(os.path.join(output_dir, 'data_with_sequences.pkl'))

df_seqs = dcm_tools.identify_sequences(df, series_descr_map, output_dir)

# Create Summary df
Esempio n. 12
0
import analysis.irb_13384.coh_config as config
from tools import data_io as dio
import analysis.irb_13384.coh_helpers as ch
import tools.general_tools as gt
import os

gt.ensure_dir_exists(config.coh_dir_analysis_segmentation)
data_io = dio.DataIO(config.coh_dir_bids, config.path_to_coh_bids_config)

# This function looks for existing segmentation files and analyzes them
# It gives preferences to files ending in '_p.mha'
df = ch.analyze_segmentations(data_io, subjects=None)

#-- compute total volume
all_segmentation_labels = [
    col for col in df.columns if col.startswith('bratumia')
]
df["bratumia_total_segmented_volume"] = df[all_segmentation_labels].sum(axis=1)
all_tumor_labels = [
    'bratumia_EnhancingTumor', 'bratumia_Necrosis',
    'bratumia_NonEnhancingTumor'
]
df["bratumia_TotalTumor"] = df[all_tumor_labels].sum(axis=1)
other_tumor_labels = ['bratumia_Necrosis', 'bratumia_NonEnhancingTumor']
df["bratumia_OtherTumor"] = df[other_tumor_labels].sum(axis=1)
#-- save
df.to_excel(
    os.path.join(config.coh_dir_analysis_segmentation,
                 'segmentation_stats_single_index.xls'))
df = df.set_index(['subject_id', 'session']).sort_index()
df.to_excel(config.coh_dir_output_labelstats_xls)
#coh_data_dir = os.path.join(coh_base_dir,'ORIG')
coh_base_dir_in = "/Volumes/WD-EXT_1TB_MacOS_ENC/COH"
coh_base_dir_in = "/Volumes/Macintosh HD-1/Users/mathoncuser/Desktop/DATA/CAR-T-CELL"
coh_base_dir_in = "/Volumes/mathoncuser/Desktop/DATA/CAR-T-CELL"
coh_dir_raw_data = coh_base_dir_in

coh_analysis_dir     = os.path.join(project_path, 'analysis', 'irb_13384')

path_to_coh_bids_config = os.path.join(coh_analysis_dir, 'coh_bids_config.json')

#path_to_id_map = os.path.join(project_path, 'do_not_include_in_git', 'car-t-cell_patient-list_plain.xlsx')

#== output to BRAIN folder
coh_dir_output_repo  = os.path.join(coh_base_dir_out, 'output')
gt.ensure_dir_exists(coh_dir_output_repo)
coh_dir_output_datainfo  = os.path.join(coh_dir_output_repo, 'datainfo')
gt.ensure_dir_exists(coh_dir_output_datainfo)
coh_path_to_metadata_raw_xls = os.path.join(coh_dir_output_datainfo, 'dcm_metadata.xls')
coh_path_to_metadata_raw_pkl = os.path.join(coh_dir_output_datainfo, 'dcm_metadata.pkl')
coh_path_to_metadata_sequences_xls = os.path.join(coh_dir_output_datainfo, 'dcm_metadata_with_sequences.xls')
coh_path_to_metadata_sequences_pkl = os.path.join(coh_dir_output_datainfo, 'dcm_metadata_with_sequences.pkl')
coh_path_to_metadata_sequences_selection_xls = os.path.join(coh_dir_output_datainfo, 'dcm_metadata_with_sequences_selection.xls')
coh_path_to_metadata_sequences_timepoint_summary_xls       = os.path.join(coh_dir_output_datainfo, 'dcm_metadata_with_sequences_timepoint_summary.xls')

coh_dir_output_processed  = os.path.join(coh_dir_output_repo, 'processed')
coh_dir_output_for_nb  = os.path.join(coh_dir_output_repo, 'for_notebook')
coh_dir_output_labelstats_xls = os.path.join(coh_dir_output_repo, 'segmentation_label_stats.xls')
coh_dir_output_labelstats_pkl = os.path.join(coh_dir_output_repo, 'segmentation_label_stats.pkl')

coh_dir_scanned_for_seg_xls = os.path.join(coh_dir_bratumia, 'files_scanned_for_segmentation.xls')