Esempio n. 1
0
def main():
    parser = argparse.ArgumentParser(
        description='Calculate meta information for real traces',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument('network')
    parser.add_argument('traceroutes')
    parser.add_argument('output')
    parser.add_argument('--maxi', type=int, default=500)

    # for paralelization
    parser.add_argument('--lower-bound', '-lb', type=int, default=0, dest='lb')
    parser.add_argument('--upper-bound',
                        '-ub',
                        type=int,
                        default=-1,
                        dest='ub')

    arguments = parser.parse_args()

    g = helpers.load_as_inferred_links(arguments.network)
    traceroutes = helpers.load_from_json(arguments.traceroutes)

    # traceroutes = random.sample(traceroutes, arguments.maxi)

    arguments.lb = arguments.lb if 0 <= arguments.lb <= len(traceroutes) else 0
    arguments.ub = arguments.ub if 0 <= arguments.ub <= len(
        traceroutes) else len(traceroutes)

    result = filter(g, traceroutes[arguments.lb:arguments.ub])

    helpers.save_to_json(arguments.output, result)
Esempio n. 2
0
def sh_gen(arguments):
    ba_graph = helpers.load_network(arguments.ba_graph)
    trace_count = int(arguments.route_count)
    node_ids = range(ba_graph.vcount())
    logger.info('Trace count: %d' % trace_count)

    random_pairs = [random.sample(node_ids, 2) for x in xrange(trace_count)]
    random_pairs = [(ba_graph.vs[x[0]]['name'], ba_graph.vs[x[1]]['name'])
                    for x in random_pairs]
    logger.info('Random pair count: %d' % len(random_pairs))

    shls = []
    results = []
    for s_name, t_name in random_pairs:
        shl = ba_graph.shortest_paths(s_name, t_name)[0][0] + 1
        while shl == float('inf'):
            s, t = random.sample(node_ids, 2)
            s_name = ba_graph.vs[s]['name']
            t_name = ba_graph.vs[t]['name']
            shl = ba_graph.shortest_paths(s_name, t_name)[0][0] + 1
        logger.debug('From %s to %s SH: %d' % (s_name, t_name, shl))
        shls.append(shl)
        results.append([(s_name, t_name), shl])

    # result = zip(random_pairs, shls)
    helpers.save_to_json(arguments.sh_path_output, results)
Esempio n. 3
0
def upwalker_counter(g, meta, vf_g, arguments):
    N = g.vcount()
    progress = progressbar1.DummyProgressBar(end=10, width=15)
    if arguments.progressbar:
        progress = progressbar1.AnimatedProgressBar(end=len(meta), width=15)

    # trace_up_map = {}
    # random_up_map = {}

    trace_up_counter = []
    random_up_counter = []

    for m in meta:
        progress += 1
        progress.show_progress()

        trace = m[helpers.TRACE]
        trace_dir = vft.trace_to_string(g, trace)
        trace_up_count = trace_dir.count('U')
        trace_up_counter.append(trace_up_count)
        # trace_up_map[trace_up_count] = trace_up_map.get(trace_up_count, 0) +
        # 1

        s, t = trace[0], trace[-1]
        s_idx, t_idx = vft.node_to_nodeid(g, s), vft.node_to_nodeid(g, t)

        random_vf_route = helpers.random_route_walk(vf_g,
                                                    s_idx,
                                                    t_idx + N,
                                                    len(trace),
                                                    named=False,
                                                    weight_field='VFweight')
        random_vf_route = vft.vf_route_converter(random_vf_route, N)
        random_vf_dir = vft.trace_to_string(g, random_vf_route)
        random_vf_count = random_vf_dir.count('U')
        random_up_counter.append(random_vf_count)
        # random_up_map[random_vf_count] = random_up_map.get(random_vf_count,
        # 0) + 1

    real_counter = collections.Counter(trace_up_counter)
    real_up = ' '.join(
        ['%s: %s' % (k, real_counter[k]) for k in sorted(list(real_counter))])
    random_counter = collections.Counter(random_up_counter)
    random_up = ' '.join([
        '%s: %s' % (k, random_counter[k]) for k in sorted(list(random_counter))
    ])

    logger.info('')
    logger.info('Real trace UP counter: %s' % real_up)
    logger.info('Random vf trace up counter: %s' % random_up)

    helpers.save_to_json(arguments.out, {
        'REAL': dict(real_counter),
        'RANDOM': dict(random_counter)
    })

    keys = sorted(set(list(real_counter) + list(random_counter)))
    logger.info('IDX;REAL;RANDOM')
    for k in keys:
        logger.info('%s;%d;%d' % (k, real_counter[k], random_counter[k]))
Esempio n. 4
0
def ba_calc(arguments):
    ba_graph = helpers.load_network(arguments.ba_graph)
    sh_paths = helpers.load_from_json(arguments.point_pairs)
    out = arguments.out

    min_stretch = arguments.min_stretch
    max_stretch = arguments.max_stretch

    max_c = len(sh_paths)
    arguments.lb = arguments.lb if 0 <= arguments.lb <= max_c else 0
    arguments.ub = arguments.ub if 0 <= arguments.ub <= max_c else max_c

    arguments.lb, arguments.ub = (min(arguments.lb, arguments.ub),
                                  max(arguments.lb, arguments.ub))

    sh_paths = sh_paths[arguments.lb:arguments.ub]
    vf_g_closeness = vft.convert_to_vf(ba_graph, vfmode=vft.CLOSENESS)

    results = [[] for x in xrange(min_stretch, max_stretch + 1)]

    for stretch in xrange(min_stretch, max_stretch + 1):
        logger.info('Calculate results with stretch %d' % stretch)
        result = ba_generator(ba_graph, sh_paths, stretch, vf_g_closeness,
                              arguments.progressbar)
        results[stretch - min_stretch] = result

    helpers.save_to_json(out, results)
Esempio n. 5
0
def main():
    parser = argparse.ArgumentParser(description='Calculate meta information for real traces', formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument('network')
    parser.add_argument('meta')
    parser.add_argument('output', type=argparse.FileType('w'))

    # parser.add_argument('--vfmode', type=str, default='labeled', dest='vfmode',
    #                     choices=['labeled', 'closeness'])

    # for paralelization
    parser.add_argument('--lower-bound', '-lb', type=int, default=0, dest='lb')
    parser.add_argument('--upper-bound', '-ub', type=int, default=-1, dest='ub')

    parser.add_argument('--progressbar', action='store_true')
    parser.add_argument('--verbose', '-v', action='count', default=0)

    parser.add_argument('--with-prelabeled', action='store_true')
    parser.add_argument('--with-closeness', action='store_true')
    parser.add_argument('--with-degree', action='store_true')

    parser.add_argument('--with-lp-hard', action='store_true')
    parser.add_argument('--with-lp-soft', action='store_true')
    # parser.add_argument('--with-lp', action='store_true')
    # parser.add_argument('--with-vf', action='store_true')

    parser.add_argument('--try-per-trace',
                        type=int, default=1, dest='try_per_trace')

    arguments = parser.parse_args()

    arguments.verbose = min(len(helpers.LEVELS), arguments.verbose)
    logging.getLogger('compnet').setLevel(helpers.LEVELS[arguments.verbose])

    g = helpers.load_network(arguments.network)

    meta = helpers.load_from_json(arguments.meta)

    arguments.lb = arguments.lb if 0 <= arguments.lb <= len(meta) else 0
    arguments.ub = arguments.ub if 0 <= arguments.ub <= len(meta) else len(meta)

    flags = {
        FLAG_PRELABELED: arguments.with_prelabeled,
        FLAG_CLOSENESS: arguments.with_closeness,
        FLAG_DEGREE: arguments.with_degree,
        FLAG_LP_HARD: arguments.with_lp_hard,
        FLAG_LP_SOFT: arguments.with_lp_soft
    }

    # if arguments.vfmode == 'labeled': mode = vft.ORDER_PRELABELED
    # elif arguments.vfmode == 'closeness': mode = vft.ORDER_CLOSENESS
    # else: raise RuntimeError('Unhandled vfmode')

    meta = meta[arguments.lb:arguments.ub]
    # update meta at place
    purify(g, meta, flags, arguments.try_per_trace, arguments.progressbar)
    logger.info('Save to %s' % arguments.output)
    helpers.save_to_json(arguments.output, meta)
Esempio n. 6
0
def wrap_watts_trace_gen(args):
    g = helpers.load_network(args.network)
    traceroutes = helpers.load_from_json(args.original_traceroutes)
    max_c = len(traceroutes)
    args.lb = args.lb if 0 <= args.lb <= max_c else 0
    args.ub = args.ub if 0 <= args.ub <= max_c else max_c

    args.lb, args.ub = (min(args.lb, args.ub), max(args.lb, args.ub))
    traceroutes = traceroutes[args.lb:args.ub]

    watts_traceroutes = watts_trace_gen(g, traceroutes, args.progressbar)

    helpers.save_to_json(args.traceroute_dest, watts_traceroutes)
Esempio n. 7
0
def main():
    parser = argparse.ArgumentParser(
        description=
        'Filter out non vf and non lp traceroutes from given traceroute list',
        parents=[
            argparse_general.commonParser,
        ],
        **argparse_general.commonParams)

    parser.add_argument('network')
    parser.add_argument('traceroutes')
    parser.add_argument(
        '--filter',
        default='sh+loop+ex+lp',
        help=
        'Possible values: sh (short), loop (AS number repetition), ex (non existent), vf (non valley free), lp (non local preferenced), or any combination with + sign. Note that lp automatically means vf+lp'
    )
    parser.add_argument('--lp-type',
                        default='first',
                        choices=['first', 'all'],
                        dest='first_edge')
    parser.add_argument('output')

    arguments = parser.parse_args()

    arguments.verbose = min(len(helpers.LEVELS), arguments.verbose)
    logging.getLogger('compnet').setLevel(helpers.LEVELS[arguments.verbose])

    arguments.first_edge = arguments.first_edge == 'first'
    if arguments.first_edge:
        logger.debug('LP only first edge')
    else:
        logger.debug('LP all edge')

    g = helpers.load_network(arguments.network)
    traceroutes = helpers.load_from_json(arguments.traceroutes)

    arguments.lb = arguments.lb if 0 <= arguments.lb <= len(traceroutes) else 0
    arguments.ub = arguments.ub if 0 <= arguments.ub <= len(
        traceroutes) else len(traceroutes)

    arguments.filter = arguments.filter.replace('lp', 'vf+lp')

    filters = arguments.filter.split('+')

    result = filter(g, traceroutes[arguments.lb:arguments.ub], filters,
                    arguments.first_edge)

    helpers.save_to_json(arguments.output, result)
Esempio n. 8
0
def main():
    parser = argparse.ArgumentParser(
        description=('Generate test graphs'),
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('graph_out', metavar='graph-out')
    parser.add_argument('trace_out', metavar='trace-out')
    parser.add_argument('--progressbar', action='store_true')
    parser.add_argument('--verbose', '-v', action='count', default=0)

    parser.add_argument('--node-count',
                        '-nc',
                        type=int,
                        dest='node_count',
                        default=100)
    parser.add_argument('--network-type',
                        choices=[x for x in graphs_map.iterkeys()],
                        default='star')
    parser.add_argument('--trace-count', type=int, default=50)

    arguments = parser.parse_args()

    arguments.verbose = min(len(helpers.LEVELS), arguments.verbose)
    logging.getLogger('compnet').setLevel(helpers.LEVELS[arguments.verbose])

    show_progress = arguments.progressbar

    # g = graphs_map[arguments.network_type](arguments.node_count)
    # g = igraph.Graph.Barabasi(900, 9)
    # for n in g.vs:
    #     n['closeness'] = g.closeness(n)
    #     n['name'] = 'V%d' % n.index

    # g.save(arguments.graph_out)
    g = igraph.load(arguments.graph_out)

    pairs = [
        random.sample(xrange(0, g.vcount()), 2)
        for x in xrange(0, arguments.trace_count)
    ]
    pairs = [[g.vs[x[0]]['name'], g.vs[x[1]]['name']] for x in pairs]

    traces = []
    for p in pairs:
        trace = random.choice(g.get_all_shortest_paths(p[0], p[1]))
        trace = [g.vs[x]['name'] for x in trace]
        traces.append(trace)

    helpers.save_to_json(arguments.trace_out, traces)
Esempio n. 9
0
def purify(g, out, count=1000, show_progress=False):

    logger.info('Started')
    nodes = range(0, g.vcount())
    endpoints = [random.sample(nodes, 2) for idx in range(0, count)]

    progress = progressbar1.DummyProgressBar(end=10, width=15)
    if show_progress:
        progress = progressbar1.AnimatedProgressBar(
            end=len(endpoints), width=15)
    traces = []
    for endpoint in endpoints:
        progress += 1
        progress.show_progress()
        src, dst = endpoint
        trace = g.get_shortest_paths(src, dst)[0]
        if len(trace) > 0:
            traces.append([g.vs[x]['name'] for x in trace])

    logger.info('Len last trace: %d' % len(trace))
    helpers.save_to_json(out, traces)
Esempio n. 10
0
def purify(g, meta, out, count=1000):
    results = list()
    results2 = list()
    results3 = list()
    all_vf = 0
    all_nonvf = 0
    all_vf_closeness = 0
    all_nonvf_closeness = 0

    short_results = list()
    short_results2 = list()
    short_results3 = list()
    all_short_vf = 0
    all_short_nonvf = 0
    all_short_vf_closeness = 0
    all_short_nonvf_closeness = 0

    long_results = list()
    long_results2 = list()
    long_results3 = list()
    all_long_vf = 0
    all_long_nonvf = 0
    all_long_vf_closeness = 0
    all_long_nonvf_closeness = 0

    # remove traces with already calculated all_path
    logger.warn('[r]ONLY NOT FILLED PATHS[/]')
    meta = [x for x in meta if not helpers.ALL_PATH_COUNT in x]

    # traces with a maximum stretch
    logger.warn('[r]!!!ONLY WITH LOW STRETCH[/]')
    meta = [x for x in meta if x[helpers.STRETCH] < 4]

    # shorter meta records
    logger.warn('[r]!!!ONLY SHORT TRACES[/]')
    meta = [x for x in meta if len(x[helpers.TRACE]) < 5]

    meta_map = {tuple(x[helpers.TRACE]): x for x in meta}

    # traceroutes = [x for x in meta if x[TRACE_LEN] == x[SH_LEN]]
    logger.info('All trace count: %d' % len(meta))
    tr_count = min(len(meta), count)
    meta = random.sample(meta, tr_count)
    logger.info('Chosen trace count: %d' % len(meta))

    real_vf = [x for x in meta if x[helpers.IS_VF] == 1]
    real_nonvf = [x for x in meta if x[helpers.IS_VF] == 0]

    real_vf_closeness = [x for x in meta if x[helpers.IS_VF_CLOSENESS] == 1]
    real_nonvf_closeness = [x for x in meta if x[helpers.IS_VF_CLOSENESS] == 0]

    logger.info('Real vf: %f[%d]' % ((len(real_vf)/float(len(meta)), len(real_vf))))
    logger.info('Real nonvf: %f[%d]' % ((len(real_nonvf)/float(len(meta)), len(real_nonvf))))

    logger.info('Real vf closeness: %f[%d]' % ((len(real_vf_closeness)/float(len(meta)), len(real_vf_closeness))))
    logger.info('Real nonvf closeness: %f[%d]' % ((len(real_nonvf_closeness)/float(len(meta)), len(real_nonvf_closeness))))

    logger.info('Remove unknown traces. Trace count before: %d' % len(meta))
    traceroutes = [x[helpers.TRACE] for x in meta]
    traceroutes, ignored = vft.trace_clean(g, traceroutes)
    logger.info('Traceroutes after: %d. Ignored: %d' % (len(traceroutes), ignored))

    traceroutes = vft.trace_in_vertex_id(g, traceroutes)

    progress = progressbar1.AnimatedProgressBar(end=len(traceroutes), width=15)
    for trace in traceroutes:
        progress += 1
        progress.show_progress()

        for x in range(0, g.vcount()):
            g.vs[x]['traces'] = dict()

        s, t = trace[0], trace[-1]
        sh_path = g.get_all_shortest_paths(s, t, mode=i.OUT)
        all_path = helpers.dfs_mark(copy.deepcopy(g), s, t, len(trace))

        # if len(sh_path) != len(all_path):
        #     print len(sh_path)
        #     print len(all_path)
        #     print s, t

        # sanity check
        for x in all_path:
            if x[0] != s or x[-1] != t:
                logger.error('ALERT')
        if len(set([tuple(x) for x in all_path])) != len(all_path):
            logger.error('LENGTH ALERT')
            logger.error('%s' % len(all_path))
            logger.error('%s' % len(set([tuple(x) for x in all_path])))
            logger.error('%s' % sorted(all_path))

        long_path = [x for x in all_path if len(x) == len(trace)]
        short_path = [x for x in all_path if len(x) < len(trace)]

        named_trace = [g.vs[x]['name'] for x in trace]
        extra_meta = {
            helpers.ALL_PATH_COUNT: len(all_path),
            helpers.SAME_LONG_PATH_COUNT: len(long_path),
            helpers.SHORTER_PATH_COUNT: len(short_path)
        }
        meta_map[tuple(named_trace)].update(extra_meta)

        vf_count = sum([1 if vft.is_valley_free(g, x, vfmode=vft.PRELABELED) else 0 for x in all_path])
        nonvf = len(all_path) - vf_count

        vf_closeness_count = sum([1 if vft.is_valley_free(g, x, vfmode=vft.CLOSENESS) else 0 for x in all_path])
        nonvf_closeness = len(all_path) - vf_closeness_count

        tmp = [1 if vft.is_valley_free(g, x, vfmode=vft.PRELABELED) else 0 for x in short_path]
        short_vf_count = sum(tmp)
        short_nonvf = len(tmp) - short_vf_count

        tmp = [1 if vft.is_valley_free(g, x, vfmode=vft.CLOSENESS) else 0 for x in short_path]
        short_vf_closeness_count = sum(tmp)
        short_nonvf_closeness = len(tmp) - short_vf_closeness_count

        tmp = [1 if vft.is_valley_free(g, x, vfmode=vft.PRELABELED) else 0 for x in long_path]
        long_vf_count = sum(tmp)
        long_nonvf = len(tmp) - long_vf_count

        tmp = [1 if vft.is_valley_free(g, x, vfmode=vft.CLOSENESS) else 0 for x in long_path]
        long_vf_closeness_count = sum(tmp)
        long_nonvf_closeness = len(tmp) - long_vf_closeness_count

        extra_meta = {
            helpers.ALL_PATH_VF_COUNT: vf_closeness_count,
            helpers.SAME_LONG_PATH_VF_COUNT: long_vf_closeness_count,
            helpers.SHORTER_PATH_VF_COUNT: short_vf_closeness_count
        }
        meta_map[tuple(named_trace)].update(extra_meta)

        all_vf += vf_count
        all_nonvf += nonvf

        all_vf_closeness += vf_closeness_count
        all_nonvf_closeness += nonvf_closeness

        all_long_vf += long_vf_count
        all_long_nonvf += long_nonvf

        all_long_vf_closeness += long_vf_closeness_count
        all_long_nonvf_closeness += long_nonvf_closeness

        all_short_vf += short_vf_count
        all_short_nonvf += short_nonvf

        all_short_vf_closeness += short_vf_closeness_count
        all_short_nonvf_closeness += short_nonvf_closeness

        results.append(vf_count / float(len(all_path)))
        results3.append(vf_closeness_count / float(len(all_path)))
        if len(all_path) > 1: results2.append(vf_count / float(len(all_path)))

        long_results.append(long_vf_count / float(len(long_path)))
        long_results3.append(long_vf_closeness_count / float(len(long_path)))
        if len(long_path) > 1: long_results2.append(long_vf_count / float(len(long_path)))

        if len(short_path) > 0:
            short_results.append(short_vf_count / float(len(short_path)))
            short_results3.append(short_vf_closeness_count / float(len(short_path)))
        else:
            pass
            # short_results.append(0)
            # short_results3.append(0)
        if len(short_path) > 1: short_results2.append(short_vf_count / float(len(short_path)))

    # save mofified meta
    meta_mod = [x for x in meta_map.itervalues()]
    helpers.save_to_json(out, meta_mod)

    # print results
    print 'ALL'
    print 'VF count: %d' % all_vf
    print 'VF CLOSENESS count: %d' % all_vf_closeness
    print 'Non vf count: %d' % all_nonvf
    print 'Non vf CLOSENESS count: %d' % all_nonvf_closeness
    print 'VF perc: %f' % (all_vf/float(all_vf + all_nonvf))
    print 'VF CLOSENESS perc: %f' % (all_vf_closeness/float(all_vf_closeness + all_nonvf_closeness))
    print 'Mean VF prob: %f' % np.mean(results)
    print 'Mean VF CLOSENESS prob: %f' % np.mean(results3)
    print 'Mean VF2 prob: %f' % np.mean(results2)
    print '=========='
    print 'SHORT'
    print 'VF count: %d' % all_short_vf
    print 'VF  CLOSENESS count: %d' % all_short_vf_closeness
    print 'Non vf count: %d' % all_short_nonvf
    print 'Non vf CLOSENESS count: %d' % all_short_nonvf_closeness
    if all_short_vf + all_short_nonvf > 0:
        print 'VF perc: %f' % (all_short_vf/float(all_short_vf + all_short_nonvf))
    if all_short_vf_closeness + all_short_nonvf_closeness > 0:
        print 'VF CLOSENESS perc: %f' % (all_short_vf_closeness/float(all_short_vf_closeness + all_short_nonvf_closeness))
    print 'Mean VF prob: %f' % np.mean(short_results)
    print 'Mean VF CLOSENESS prob: %f' % np.mean(short_results3)
    print 'Mean VF2 prob: %f' % np.mean(short_results2)
    print '=-----------------'
    print 'LONG'
    print 'VF count: %d' % all_long_vf
    print 'VF CLOSENESS count: %d' % all_long_vf_closeness
    print 'Non vf count: %d' % all_long_nonvf
    print 'Non vf CLOSENESS count: %d' % all_long_nonvf_closeness
    print 'VF perc: %f' % (all_long_vf/float(all_long_vf + all_long_nonvf))
    print 'VF CLOSENESS perc: %f' % (all_long_vf_closeness/float(all_long_vf_closeness + all_long_nonvf_closeness))
    print 'Mean VF prob: %f' % np.mean(long_results)
    print 'Mean VF CLOSENESS prob: %f' % np.mean(long_results3)
    print 'Mean VF2 prob: %f' % np.mean(long_results2)
Esempio n. 11
0
def purify(g,
           meta_original,
           out,
           count=1000,
           try_per_race=1,
           show_progress=False,
           with_lp=True):

    empty = 0
    # remove traces with already calculated random paths
    logger.warn('[r]ONLY NOT FILLED PATHS[/]')
    meta_filled = [
        x for x in meta_original if helpers.RANDOM_WALK_RUN_COUNT not in x
    ]

    # Filter if interested only in routes of stretch 1
    # meta_filled = [x for x in meta_original
    #                if x[helpers.TRACE_LEN]-x[helpers.SH_LEN] == 1]

    ## traces with a maximum stretch
    # logger.warn('[r]!!!ONLY WITH STRETCH[/]')
    # meta = [x for x in meta if x[helpers.STRETCH] > -1]

    # # shorter meta records
    # logger.warn('[r]!!!ONLY SHORT TRACES[/]')
    # meta = [x for x in meta if len(x[helpers.TRACE]) < 5]

    # meta_map = {tuple(x[helpers.TRACE]): x for x in meta_filled}

    logger.info('All trace count: %d' % len(meta_filled))
    tr_count = min(len(meta_filled), count)
    meta_random = random.sample(meta_filled, tr_count)
    logger.info('Chosen subset count: %d' % len(meta_random))

    # real_vf_degree = [x for x in meta_random if x[helpers.IS_VF_DEGREE] == 1]
    # real_nonvf_degree = [x for x in meta_random if x[helpers.IS_VF_DEGREE] == 0]
    # assert len(real_nonvf_degree) == tr_count - len(real_vf_degree)

    # real_vf_prelabeled = [x for x in meta_random if x[helpers.IS_VF_PRELABELED] == 1]
    # real_nonvf_prelabeled = [x for x in meta_random if x[helpers.IS_VF_PRELABELED] == 0]
    # assert len(real_nonvf_prelabeled) == tr_count - len(real_vf_prelabeled)

    # real_vf_closeness = [x for x in meta_random if x[helpers.IS_VF_CLOSENESS] == 1]
    # real_nonvf_closeness = [x for x in meta_random if x[helpers.IS_VF_CLOSENESS] == 0]
    # assert len(real_nonvf_closeness) == tr_count - len(real_vf_closeness)

    # logger.info('Real vf degree: %f[%d]' % ((len(real_vf_degree) / float(tr_count),
    #                                  len(real_vf_degree))))
    # logger.info('Real nonvf degree: %f[%d]' % ((len(real_nonvf_degree) / float(tr_count),
    #                                     len(real_nonvf_degree))))

    # logger.info('Real vf prelabeled: %f[%d]' % ((len(real_vf_prelabeled) / float(tr_count),
    #                                  len(real_vf_prelabeled))))
    # logger.info('Real nonvf prelabeled: %f[%d]' % ((len(real_nonvf_prelabeled) / float(tr_count),
    #                                     len(real_nonvf_prelabeled))))
    # logger.info('Real vf closeness: %f[%d]' % ((len(real_vf_closeness)/float(tr_count), len(real_vf_closeness))))
    # logger.info('Real nonvf closeness: %f[%d]' % ((len(real_nonvf_closeness)/float(tr_count), len(real_nonvf_closeness))))

    # traceroutes = [x[helpers.TRACE] for x in meta_random]
    # traceroutes = vft.trace_in_vertex_id(g, traceroutes)

    try:
        meta_random[0][helpers.TRACE]
    except Exception:
        meta_random = [{helpers.TRACE: x} for x in meta_random]

    progress = progressbar1.DummyProgressBar(end=10, width=15)
    if show_progress:
        progress = progressbar1.AnimatedProgressBar(end=len(meta_random),
                                                    width=15)

    stretch_list = []
    max_stretch = max(
        [x[helpers.TRACE_LEN] - x[helpers.SH_LEN] for x in meta_random])
    for stretch in range(0, max_stretch + 1):
        metas = [
            x for x in meta_random
            if x[helpers.TRACE_LEN] - x[helpers.SH_LEN] == stretch
        ]
        stretch_list.extend(list(repeat(stretch, len(metas))))

    # print(stretch_list)
    lenghts = random.shuffle(stretch_list)

    strx_array = []

    for idx, trace_meta in enumerate(meta_random):
        progress += 1
        progress.show_progress()
        # print(trace_meta[helpers.TRACE])
        shl = trace_meta[helpers.SH_LEN]
        trace = vft.trace_in_vertex_id(g, [
            trace_meta[helpers.TRACE],
        ])
        if len(trace) != 1:
            print 'PROBLEM'
            print trace_meta
            continue
        trace = trace[0]
        # print(trace)
        random_walk_closeness_route_vf = 0
        random_walk_closeness_route_lp_soft = 0
        random_walk_closeness_route_lp_hard = 0
        random_walk_degree_route_vf = 0
        random_walk_degree_route_lp_soft = 0
        random_walk_degree_route_lp_hard = 0
        random_walk_prelabeled_route_vf = 0
        random_walk_prelabeled_route_lp_soft = 0
        random_walk_prelabeled_route_lp_hard = 0

        s, t = trace[0], trace[-1]
        for counter in xrange(0, try_per_race):
            # random_path = helpers.random_route_walk(g, s, t, len(trace)) # Modified
            random_path = helpers.random_route_walk(
                g, s, t, shl + stretch_list[idx])  # Modified
            if len(random_path) == 0:
                empty += 1
            if vft.is_valley_free(g, random_path, vfmode=vft.CLOSENESS):
                random_walk_closeness_route_vf += 1
                if (len(random_path) == shl + 1):
                    strx_array.append(1)
                if with_lp:
                    lp_soft = vft.is_local_preferenced(g,
                                                       random_path,
                                                       first_edge=True,
                                                       vfmode=vft.CLOSENESS)
                    lp_hard = vft.is_local_preferenced(g,
                                                       random_path,
                                                       first_edge=False,
                                                       vfmode=vft.CLOSENESS)
                    if lp_soft:
                        random_walk_closeness_route_lp_soft += 1
                    if lp_hard:
                        random_walk_closeness_route_lp_hard += 1
            else:
                if (len(random_path) == shl + 1):
                    strx_array.append(0)

            # if vft.is_valley_free(g, random_path, vfmode=vft.DEGREE):
            #     random_walk_degree_route_vf += 1
            #     if with_lp:
            #         lp_soft = vft.is_local_preferenced(g, random_path,
            #                                            first_edge=True,
            #                                            vfmode=vft.DEGREE)
            #         lp_hard = vft.is_local_preferenced(g, random_path,
            #                                            first_edge=False,
            #                                            vfmode=vft.DEGREE)
            #         if lp_soft:
            #             random_walk_degree_route_lp_soft += 1
            #         if lp_hard:
            #             random_walk_degree_route_lp_hard += 1

            # if vft.is_valley_free(g, random_path, vfmode=vft.PRELABELED):
            #     random_walk_prelabeled_route_vf += 1
            #     if with_lp:
            #         lp_soft = vft.is_local_preferenced(g, random_path,
            #                                            first_edge=True,
            #                                            vfmode=vft.PRELABELED)
            #         lp_hard = vft.is_local_preferenced(g, random_path,
            #                                            first_edge=False,
            #                                            vfmode=vft.PRELABELED)
            #         if lp_soft:
            #             random_walk_prelabeled_route_lp_soft += 1
            #         if lp_hard:
            #             random_walk_prelabeled_route_lp_hard += 1

            # sanity check


#             if random_path[0] != s or random_path[-1] != t:
#                 logger.error('ALERT')

            if len(random_path) != len(set(random_path)):
                logger.error('LENGTH ERROR')

        extra_meta = {
            helpers.RANDOM_WALK_RUN_COUNT:
            try_per_race,
            helpers.RANDOM_WALK_VF_CLOSENESS_ROUTE:
            random_walk_closeness_route_vf,
            helpers.RANDOM_WALK_VF_DEGREE_ROUTE:
            random_walk_degree_route_vf,
            helpers.RANDOM_WALK_VF_PRELABELED_ROUTE:
            random_walk_prelabeled_route_vf,
        }
        if with_lp:
            extra_meta.update({
                helpers.RANDOM_WALK_LP_SOFT_CLOSENESS_ROUTE:
                random_walk_closeness_route_lp_soft,
                helpers.RANDOM_WALK_LP_HARD_CLOSENESS_ROUTE:
                random_walk_closeness_route_lp_hard,
                helpers.RANDOM_WALK_LP_SOFT_DEGREE_ROUTE:
                random_walk_degree_route_lp_soft,
                helpers.RANDOM_WALK_LP_HARD_DEGREE_ROUTE:
                random_walk_degree_route_lp_hard,
                helpers.RANDOM_WALK_LP_SOFT_PRELABELED_ROUTE:
                random_walk_prelabeled_route_lp_soft,
                helpers.RANDOM_WALK_LP_HARD_PRELABELED_ROUTE:
                random_walk_prelabeled_route_lp_hard
            })

        trace_meta.update(extra_meta)

    ## save modified meta
    # all meta_* get only references from meta_original
    helpers.save_to_json(out, meta_random)
    # meta_mod = [x for x in meta_map.itervalues()]
    # helpers.save_to_json(out, meta_mod)

    # calculate results
    # real_vf = [x[helpers.IS_VF_CLOSENESS] for x in meta_random]
    # real_vf_ratio = np.mean(real_vf)

    random_walk_vf_ratio_per_element = [
        x[helpers.RANDOM_WALK_VF_CLOSENESS_ROUTE] /
        x[helpers.RANDOM_WALK_RUN_COUNT] for x in meta_random
    ]
    random_walk_vf_ratio = np.mean(random_walk_vf_ratio_per_element)
    # print results
    logger.info('')
    logger.info('Empty: %d' % empty)
    logger.info('Tested trace count: %d' % len(meta_random))
    # logger.info('VF ratio in tested traces: %f' % real_vf_ratio)
    logger.info('VF ratio in random walks: %f' % random_walk_vf_ratio)
    logger.info('VF ratio in random walks for path stretch 1: %f' %
                np.mean(strx_array))
Esempio n. 12
0
                (len_component, (len(all_long_paths) - len(component_paths))))
            logger.debug(
                'REAL: %f[%d/%d] ALL: %f[%d/%d]' %
                (np.mean(real_path_vf), sum(real_path_vf), len(real_path_vf),
                 np.mean(all_path_vf), sum(all_path_vf), len(all_path_vf)))

        real_connected_pairs_pertime.append(active_pair_counter)
        trace_count_per_pontpair_pertime.append(trace_count_per_pontpair)
        vf_trace_count_per_pontpair_pertime.append(vf_trace_count_per_pontpair)

        top_nodes_trace_pertime.append(len(current_top_nodes))
        current_top_nodes = set(current_top_nodes)
        top_nodes_pertime.append(len(current_top_nodes))

        # logger.info('Trace count: %d' % len(user_traces))
        helpers.save_to_json('traces_user_SQ8t7_%d.json' % user, user_traces)

    # print 'saved %s' % user
    # np.savetxt('user-small%s.csv' % user, pair_activity_matrix, delimiter=';')

    trace_count_per_pontpair_pertime = np.matrix(
        trace_count_per_pontpair_pertime)
    vf_trace_count_per_pontpair_pertime = np.matrix(
        vf_trace_count_per_pontpair_pertime)

    print
    tmp = [
        100 * x / float(len(functionally_connected_pairs))
        if len(functionally_connected_pairs) > 0 else 0
        for x in real_connected_pairs_pertime
    ]
Esempio n. 13
0
        traceroutes = foodweb.get_traceroutes(arguments.traceroutes_input)
    elif arguments.type == Networks.weibo:
        pass
    elif arguments.type == Networks.text:
        traceroutes = text.get_traceroutes(arguments.traceroutes_input)
    elif arguments.type == Networks.wiki:
        traceroutes = wiki.get_traceroutes(arguments.traceroutes_input)
    elif arguments.type == Networks.metabolic:
        traceroutes = metabolic.get_traceroutes(arguments.traceroutes_input)
    elif arguments.type == Networks.wordnavi:
        traceroutes = wordnavi.get_traceroutes(arguments.traceroutes_input)
    else:
        raise RuntimeError('Unknown network type')
    msg = 'Save traceroutes to {trace}'.format(trace=arguments.json_traces)
    logger.info(msg)
    helpers.save_to_json(arguments.json_traces, traceroutes)

if "network" in arguments.convert:
    # label network with caida labeling tool
    # first load previously converted traceroutes
    traceroutes = helpers.load_from_json(arguments.json_traces)
    logger.info('Trace count: {c}'.format(c=len(traceroutes)))
    # to increase accuracy
    if arguments.type == Networks.airport:
        traceroutes.extend([[y for y in reversed(x)] for x in traceroutes])

    # convert with caida labeling tools
    logger.info('Caida labeling the graph')
    edge_list = helpers.caida_labeling(arguments.caida_folder, traceroutes,
                                       arguments.network_cliques)
Esempio n. 14
0
def main():
    parser = argparse.ArgumentParser(
        description=('Syntetic route generator'),
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument('--progressbar', action='store_true')
    parser.add_argument('--verbose', '-v', action='count', default=0)

    parser.add_argument('network')
    parser.add_argument('meta')
    parser.add_argument('all_trace_out', metavar='all-trace-out')
    parser.add_argument('syntetic_out', metavar='syntetic-out')
    parser.add_argument('--trace-count',
                        '-tc',
                        type=int,
                        dest='trace_count',
                        default=5000)
    parser.add_argument('--random-sample',
                        dest='random_sample',
                        action='store_true')

    parser.add_argument('--closeness-error',
                        '-ce',
                        type=float,
                        dest='closeness_error',
                        default=0.0)

    parser.add_argument('--core-limit-percentile',
                        '-cl',
                        type=int,
                        dest='core_limit',
                        default=0)

    parser.add_argument('--toggle-node-error-mode', action='store_true')

    arguments = parser.parse_args()

    arguments.verbose = min(len(helpers.LEVELS) - 1, arguments.verbose)
    logging.getLogger('compnet').setLevel(helpers.LEVELS[arguments.verbose])

    show_progress = arguments.progressbar

    g = helpers.load_network(arguments.network)
    g = g.simplify()

    meta = helpers.load_from_json(arguments.meta)

    if arguments.random_sample:
        random.shuffle(meta)

    meta = meta[:arguments.trace_count]

    N = g.vcount()

    cl = sorted([x['closeness'] for x in g.vs], reverse=True)
    logger.info('Min closeness: %s' % np.min(cl))
    logger.info('Max closeness: %s' % np.max(cl))
    logger.info('Mean closenss: %s' % np.mean(cl))
    logger.info('10%% closeness: %s' % np.percentile(cl, 10))
    logger.info('90%% closeness: %s' % np.percentile(cl, 90))

    logger.info('Core limit: [r]%d%%[/]' % arguments.core_limit)
    change_probability = 100 * arguments.closeness_error
    logger.info('Change probability: [r]%6.2f%%[/]' % change_probability)

    core_limit = np.percentile(cl, arguments.core_limit)
    logger.info('Core limit in closeness: [bb]%f[/]' % core_limit)

    if arguments.toggle_node_error_mode:
        logger.info('[r]Node error mode[/]')
        msg = (
            "If given node's closeness >= core_limit then the new ",
            "closeness in this node is ",
            #"rand(closeness_error ... old closeness)"
            "OLD_CLOSENSS * +/- closeness_error%")
        logger.info(''.join(msg))
        logger.info('Minimum node closeness: [g]%f[/]' %
                    arguments.closeness_error)
        for n in g.vs:
            if n['closeness'] < core_limit:
                continue
            # sign = -1 if random.uniform(-1, 1) < 0 else 1
            # n['closeness'] = n['closeness'] * (1 + sign * arguments.closeness_error)

            new_closeness = random.uniform(arguments.closeness_error,
                                           n['closeness'])
            n['closeness'] = new_closeness

    g_labeled = vft.label_graph_edges(g, vfmode=vft.CLOSENESS)
    peer_edge_count = len([x for x in g_labeled.es if x['dir'] == LinkDir.P])
    logger.info('Peer edge count: %d' % peer_edge_count)

    changed_edges = []

    if not arguments.toggle_node_error_mode:
        msg = ("If the closeness values of the endpoints in given edge is ",
               "larger than the core_limit and ",
               "random(0,1) < closeness_error then change the direction ",
               "for this edge")
        logger.info(''.join(msg))

        changed_u = changed_d = 0
        changed_edges = []
        changed_edgess = []
        for edge in g_labeled.es:
            s, t = edge.source, edge.target
            s_cl = g_labeled.vs[s]['closeness']
            t_cl = g_labeled.vs[t]['closeness']

            if (s_cl < core_limit or t_cl < core_limit): continue
            if random.uniform(0, 1) > arguments.closeness_error: continue
            # if abs(s_cl - t_cl) / min(s_cl, t_cl) > 0.02: continue

            new_edge_dir = LinkDir.U if random.uniform(0,
                                                       1) > 0.5 else LinkDir.D

            if new_edge_dir != edge['dir']:
                if edge['dir'] == LinkDir.U:
                    changed_u += 1
                else:
                    changed_d += 1

                edge['dir'] = new_edge_dir
                changed_edges.append(edge)
                changed_edgess.append((edge.source, edge.target))

            # if edge['dir'] == LinkDir.U:
            #     changed_u += 1
            #     changed_edgess.append((edge.source, edge.target))
            #     edge['dir'] = LinkDir.D
            #     changed_edges.append(edge)
            # elif edge['dir'] == LinkDir.D:
            #     changed_d += 1
            #     changed_edgess.append((edge.source, edge.target))
            #     edge['dir'] = LinkDir.U
            #     changed_edges.append(edge)
        logger.info('E count: %d' % g_labeled.ecount())
        logger.info('Changed U: %d' % changed_u)
        logger.info('Changed D: %d' % changed_d)
        logger.info('Changed: %d' % (changed_d + changed_u))

    changed_e = [(g_labeled.vs[e.source]['name'],
                  g_labeled.vs[e.target]['name']) for e in changed_edges]
    changed_e = changed_e + [(x[1], x[0]) for x in changed_e]

    changed_e = set(changed_e)

    vf_g_closeness = vft.convert_to_vf(g,
                                       vfmode=vft.CLOSENESS,
                                       labeled_graph=g_labeled)

    # e_colors = []
    # for e in vf_g_closeness.es:
    #     if e.source < N and e.target < N: col = 'grey'
    #     elif e.source < N and e.target >= N: col = 'blue'
    #     elif e.source >= N and e.target >= N: col = 'red'
    #     else: col = 'cyan'
    #     e_colors.append(col)
    # igraph.plot(vf_g_closeness, "/tmp/closeness.pdf",
    #             vertex_label=vf_g_closeness.vs['name'],
    #             vertex_size=0.2,
    #             edge_color=e_colors)

    pairs = [(g.vs.find(x[helpers.TRACE][0]).index,
              g.vs.find(x[helpers.TRACE][-1]).index, tuple(x[helpers.TRACE]))
             for x in meta]

    # pairs = list(set(pairs))

    # random.shuffle(pairs)

    # visited = set()
    # pairs2 = []
    # for x in pairs:
    #     k = (x[0], x[1])
    #     if k in visited: continue
    #     visited.add(k)
    #     visited.add((k[1], k[0]))
    #     pairs2.append(x)

    # pairs = pairs2

    traces = [x[2] for x in pairs]

    stretches = []
    syntetic_traces = []
    sh_traces = []
    base_traces = []
    original_traces = []
    bad = 0

    progress = progressbar1.DummyProgressBar(end=10, width=15)
    if show_progress:
        progress = progressbar1.AnimatedProgressBar(end=len(pairs), width=15)

    for s, t, trace_original in pairs:
        progress += 1
        progress.show_progress()

        trace_original_idx = [g.vs.find(x).index for x in trace_original]
        logger.debug('Original trace: %s -- %s -- %s',
                     [g.vs[x]['name'] for x in trace_original_idx],
                     vft.trace_to_string(g, trace_original_idx, vft.CLOSENESS),
                     [g.vs[x]['closeness'] for x in trace_original_idx])

        sh_routes = g.get_all_shortest_paths(s, t)
        sh_len = len(sh_routes[0])

        sh_routes_named = [[g.vs[y]['name'] for y in x] for x in sh_routes]
        sh_trace_name = random.choice(sh_routes_named)
        base_trace_name = random.choice(sh_routes_named)

        candidates = vf_g_closeness.get_all_shortest_paths(s + N, t + N)
        candidates = [vft.vf_route_converter(x, N) for x in candidates]
        # candidates = []

        if len(candidates) == 0:
            candidates = vft.get_shortest_vf_route(g_labeled,
                                                   s,
                                                   t,
                                                   mode='vf',
                                                   vf_g=vf_g_closeness,
                                                   _all=True,
                                                   vfmode=vft.CLOSENESS)

        if len(candidates) == 0:
            s_name, t_name = g.vs[s]['name'], g.vs[t]['name']
            logger.debug("!!!No syntetic route from %s to %s" %
                         (s_name, t_name))
            continue

        logger.debug('Candidates from %s to %s:' %
                     (g.vs[s]['name'], g.vs[t]['name']))

        for c in candidates:
            logger.debug('%s -- %s -- %s' %
                         ([g.vs[x]['name'] for x in c],
                          vft.trace_to_string(g_labeled, c, vft.PRELABELED),
                          [g.vs[x]['closeness'] for x in c]))

        chosen_one = random.choice(candidates)
        chosen_one_name = [g.vs[x]['name'] for x in chosen_one]

        # print chosen_one
        # print trace_original
        # pretty_plotter.pretty_plot(g, trace_original_idx,
        #                            chosen_one, changed_edgess,
        #                            spec_color=(0, 0, 0, 155))

        hop_stretch = len(chosen_one) - sh_len
        stretches.append(hop_stretch)

        trace_original_e = zip(trace_original, trace_original[1:])
        chosen_one_e = zip(chosen_one_name, chosen_one_name[1:])
        trace_affected = any([x in changed_e for x in trace_original_e])
        chosen_affected = any([x in changed_e for x in chosen_one_e])
        logger.debug('Trace affected: %s' % trace_affected)
        logger.debug('Chosen affected: %s' % chosen_affected)

        # if hop_stretch > 2:
        #     logger.debug('Base: %s' % trace_to_string(g_labeled, base_trace_name))
        #     logger.debug('SH: %s' % trace_to_string(g_labeled, sh_trace_name))
        #     logger.debug('Trace: %s' % trace_to_string(g_labeled, trace_original))
        #     logger.debug('Syntetic: %s' % trace_to_string(g_labeled, chosen_one_name))

        if trace_affected or chosen_affected or hop_stretch > 2:
            # pretty_plotter.pretty_plot_all(g, traces,
            #                                chosen_one, changed_edgess,
            #                                spec_color=(0, 0, 0, 255))
            bad += 1

        syntetic_traces.append(chosen_one_name)
        sh_traces.append(sh_trace_name)
        base_traces.append(base_trace_name)
        original_traces.append(trace_original)
        logger.debug('From %s to %s chosen one %s' %
                     (g.vs[s]['name'], g.vs[t]['name'], chosen_one_name))

    result = zip(base_traces, sh_traces, original_traces, syntetic_traces)
    helpers.save_to_json(arguments.all_trace_out, result)
    helpers.save_to_json(arguments.syntetic_out, syntetic_traces)

    print 'Bad: %d' % bad

    c = collections.Counter(stretches)
    trace_count = len(syntetic_traces)
    logger.info('Stretch dist:')
    for k in c:
        logger.info('\t%d: %5.2f%%[%d]' %
                    (k, 100 * c[k] / float(trace_count), c[k]))
    logger.info('Valid route count: %d' % trace_count)
    logger.info('Route count parameter: %d' % arguments.trace_count)
    logger.info('Generated valid pair count: %d' % len(pairs))
Esempio n. 15
0
def purify(g,
           meta_original,
           out,
           count=1000,
           try_per_race=1,
           show_progress=False):
    empty = 0
    # remove traces with already calculated random paths
    logger.warn('[r]ONLY NOT FILLED PATHS[/]')
    meta_filled = [
        x for x in meta_original
        if helpers.RANDOM_NONVF_WALK_RUN_COUNT not in x
    ]

    logger.info('All trace count: %d' % len(meta_filled))
    tr_count = min(len(meta_filled), count)
    meta_random = random.sample(meta_filled, tr_count)
    logger.info('Chosen subset count: %d' % len(meta_random))

    real_vf_degree = [x for x in meta_random if x[helpers.IS_VF_DEGREE] == 1]
    real_nonvf_degree = [
        x for x in meta_random if x[helpers.IS_VF_DEGREE] == 0
    ]
    assert len(real_nonvf_degree) == tr_count - len(real_vf_degree)

    real_vf_prelabeled = [
        x for x in meta_random if x[helpers.IS_VF_PRELABELED] == 1
    ]
    real_nonvf_prelabeled = [
        x for x in meta_random if x[helpers.IS_VF_PRELABELED] == 0
    ]
    assert len(real_nonvf_prelabeled) == tr_count - len(real_vf_prelabeled)

    real_vf_closeness = [
        x for x in meta_random if x[helpers.IS_VF_CLOSENESS] == 1
    ]
    real_nonvf_closeness = [
        x for x in meta_random if x[helpers.IS_VF_CLOSENESS] == 0
    ]
    assert len(real_nonvf_closeness) == tr_count - len(real_vf_closeness)

    logger.info('Real vf degree: %f[%d]' %
                ((len(real_vf_degree) / float(tr_count), len(real_vf_degree))))
    logger.info(
        'Real nonvf degree: %f[%d]' %
        ((len(real_nonvf_degree) / float(tr_count), len(real_nonvf_degree))))

    logger.info(
        'Real vf prelabeled: %f[%d]' %
        ((len(real_vf_prelabeled) / float(tr_count), len(real_vf_prelabeled))))
    logger.info('Real nonvf prelabeled: %f[%d]' %
                ((len(real_nonvf_prelabeled) / float(tr_count),
                  len(real_nonvf_prelabeled))))
    logger.info(
        'Real vf closeness: %f[%d]' %
        ((len(real_vf_closeness) / float(tr_count), len(real_vf_closeness))))
    logger.info('Real nonvf closeness: %f[%d]' %
                ((len(real_nonvf_closeness) / float(tr_count),
                  len(real_nonvf_closeness))))

    progress = progressbar1.DummyProgressBar(end=10, width=15)
    if show_progress:
        progress = progressbar1.AnimatedProgressBar(end=len(meta_random),
                                                    width=15)
    for trace_meta in meta_random:
        progress += 1
        progress.show_progress()

        trace = vft.trace_in_vertex_id(g, [
            trace_meta[helpers.TRACE],
        ])
        if len(trace) != 1:
            logger.error('PROBLEM')
            logger.error('%s' % trace_meta)
            continue

        trace = trace[0]

        random_nonvf_walk_closeness_route_count = 0
        random_nonvf_walk_closeness_route_len = []
        random_nonvf_walk_degree_route_count = 0
        random_nonvf_walk_degree_route_len = []
        random_nonvf_walk_prelabeled_route_count = 0
        random_nonvf_walk_prelabeled_route_len = []

        random_nonvf_walk_lp_soft_closeness_route_count = 0
        random_nonvf_walk_lp_soft_degree_route_count = 0
        random_nonvf_walk_lp_soft_prelabeled_route_count = 0

        random_nonvf_walk_lp_hard_closeness_route_count = 0
        random_nonvf_walk_lp_hard_degree_route_count = 0
        random_nonvf_walk_lp_hard_prelabeled_route_count = 0

        s, t = trace[0], trace[-1]
        for counter in xrange(0, try_per_race):
            isvf, random_path = helpers.random_nonvf_route(
                g, s, t, len(trace), vfmode=vft.CLOSENESS)
            assert len(random_path) > 0
            if isvf:
                random_nonvf_walk_closeness_route_count += 1
                lp_soft = vft.is_local_preferenced(g,
                                                   trace,
                                                   first_edge=True,
                                                   vfmode=vft.CLOSENESS)
                lp_hard = vft.is_local_preferenced(g,
                                                   trace,
                                                   first_edge=False,
                                                   vfmode=vft.CLOSENESS)
                if lp_soft:
                    random_nonvf_walk_lp_soft_closeness_route_count += 1
                if lp_hard:
                    random_nonvf_walk_lp_hard_closeness_route_count += 1

            random_nonvf_walk_closeness_route_len.append(len(random_path))

            isvf, random_path = helpers.random_nonvf_route(g,
                                                           s,
                                                           t,
                                                           len(trace),
                                                           vfmode=vft.DEGREE)
            assert len(random_path) > 0
            if isvf:
                random_nonvf_walk_degree_route_count += 1
                lp_soft = vft.is_local_preferenced(g,
                                                   trace,
                                                   first_edge=True,
                                                   vfmode=vft.DEGREE)
                lp_hard = vft.is_local_preferenced(g,
                                                   trace,
                                                   first_edge=False,
                                                   vfmode=vft.DEGREE)
                if lp_soft:
                    random_nonvf_walk_lp_soft_degree_route_count += 1
                if lp_hard:
                    random_nonvf_walk_lp_hard_degree_route_count += 1

            random_nonvf_walk_degree_route_len.append(len(random_path))

            isvf, random_path = helpers.random_nonvf_route(
                g, s, t, len(trace), vfmode=vft.PRELABELED)

            assert len(random_path) > 0
            if isvf:
                random_nonvf_walk_prelabeled_route_count += 1
                lp_soft = vft.is_local_preferenced(g,
                                                   trace,
                                                   first_edge=True,
                                                   vfmode=vft.PRELABELED)
                lp_hard = vft.is_local_preferenced(g,
                                                   trace,
                                                   first_edge=False,
                                                   vfmode=vft.PRELABELED)
                if lp_soft:
                    random_nonvf_walk_lp_soft_prelabeled_route_count += 1
                if lp_hard:
                    random_nonvf_walk_lp_hard_prelabeled_route_count += 1
            random_nonvf_walk_prelabeled_route_len.append(len(random_path))

            # sanity check
            #             if random_path[0] != s or random_path[-1] != t:
            #                 logger.error('ALERT')

            if len(random_path) != len(set(random_path)):
                logger.error('LENGTH ERROR')

        extra_meta = {
            helpers.RANDOM_NONVF_WALK_RUN_COUNT:
            try_per_race,
            helpers.RANDOM_NONVF_WALK_VF_CLOSENESS_ROUTE:
            random_nonvf_walk_closeness_route_count,
            helpers.RANDOM_NONVF_WALK_VF_CLOSENESS_ROUTE_LEN:
            random_nonvf_walk_closeness_route_len,
            helpers.RANDOM_NONVF_WALK_VF_DEGREE_ROUTE:
            random_nonvf_walk_degree_route_count,
            helpers.RANDOM_NONVF_WALK_VF_DEGREE_ROUTE_LEN:
            random_nonvf_walk_degree_route_len,
            helpers.RANDOM_NONVF_WALK_VF_PRELABELED_ROUTE:
            random_nonvf_walk_prelabeled_route_count,
            helpers.RANDOM_NONVF_WALK_VF_PRELABELED_ROUTE_LEN:
            random_nonvf_walk_prelabeled_route_len,
            helpers.RANDOM_NONVF_WALK_LP_SOFT_DEGREE_ROUTE:
            random_nonvf_walk_lp_soft_degree_route_count,
            helpers.RANDOM_NONVF_WALK_LP_SOFT_CLOSENESS_ROUTE:
            random_nonvf_walk_lp_soft_closeness_route_count,
            helpers.RANDOM_NONVF_WALK_LP_SOFT_PRELABELED_ROUTE:
            random_nonvf_walk_lp_soft_prelabeled_route_count,
            helpers.RANDOM_NONVF_WALK_LP_HARD_DEGREE_ROUTE:
            random_nonvf_walk_lp_hard_degree_route_count,
            helpers.RANDOM_NONVF_WALK_LP_HARD_CLOSENESS_ROUTE:
            random_nonvf_walk_lp_hard_closeness_route_count,
            helpers.RANDOM_NONVF_WALK_LP_HARD_PRELABELED_ROUTE:
            random_nonvf_walk_lp_hard_prelabeled_route_count
        }

        trace_meta.update(extra_meta)

    ## save modified meta
    # all meta_* get only references from meta_original
    helpers.save_to_json(out, meta_original)

    # calculate results
    real_vf = [x[helpers.IS_VF_CLOSENESS] for x in meta_random]
    real_vf_ratio = np.mean(real_vf)

    random_nonvf_walk_vf_ratio_per_element = [
        x[helpers.RANDOM_NONVF_WALK_VF_CLOSENESS_ROUTE] /
        x[helpers.RANDOM_NONVF_WALK_RUN_COUNT] for x in meta_random
    ]
    random_nonvf_walk_vf_ratio = np.mean(
        random_nonvf_walk_vf_ratio_per_element)
    # print results
    logger.info('')
    logger.info('Empty: %d' % empty)
    logger.info('Tested trace count: %d' % len(meta_random))
    logger.info('VF ratio in tested traces: %f' % real_vf_ratio)
    logger.info('VF ratio in random walks: %f' % random_nonvf_walk_vf_ratio)