Esempio n. 1
0
def train_model():

    # 代码初始化
    n_batch_train = int(train_data_number // batch_size)
    print('n_batch_train: ', n_batch_train)
    os.makedirs(ckpt, exist_ok=True)
    session_config = dk.set_gpu()

    with tf.Session(config=session_config) as sess:
        #如果使用tensorlfow1的debug神器(主要用于查出哪里有inf或nan,不能在pycharm运行调试程序,只能在xshell里面运行)
        if use_tensoflow_debug:
            sess = tfdbg.LocalCLIDebugWrapperSession(sess)
            sess.add_tensor_filter("has_inf_or_nan", tfdbg.has_inf_or_nan)
            #然后在xshell里面运行run -f has_inf_or_nan
            # 一旦inf / nan出现,界面现实所有包含此类病态数值的张量,按照时间排序。所以第一个就最有可能是最先出现inf / nan的节点。
            # 可以用node_info, list_inputs等命令进一步查看节点的类型和输入,来发现问题的缘由。
            #教程https://blog.csdn.net/tanmx219/article/details/82318133
        # 入口
        train_x, train_y = create_inputs(is_train)
        x = tf.placeholder(tf.float32, shape=input_shape)
        y = tf.placeholder(tf.float32, shape=labels_shape)
        # 构建网络和预测
        prediction, endpoint = model(images=x,
                                     is_train=is_train,
                                     size=input_shape,
                                     l2_reg=0.0001)
        # 打印模型结构
        dk.print_model_struct(endpoint)
        # 求loss
        the_loss = get_loss(choose_loss)
        loss = the_loss(y, prediction, labels_shape_vec)
        # 设置优化器
        global_step, train_step = dk.set_optimizer(
            lr_range=lr_range, num_batches_per_epoch=n_batch_train, loss=loss)
        # 求dice_hard,不合适用acc
        dice_hard = dk.dice_hard(y,
                                 prediction,
                                 threshold=0.5,
                                 axis=[1, 2, 3],
                                 smooth=1e-5)
        # dice_hard = dk.iou_metric(prediction, y)
        # 初始化变量
        coord, threads = dk.init_variables_and_start_thread(sess)
        # 设置训练日志
        summary_dict = {'loss': loss, 'dice_hard': dice_hard}
        summary_writer, summary_op = dk.set_summary(sess, logdir, summary_dict)
        # 恢复model
        saver, start_epoch = dk.restore_model(sess,
                                              ckpt,
                                              restore_model=restore_model)
        # 显示参数量
        dk.show_parament_numbers()
        # 训练loop
        total_step = n_batch_train * epoch
        for epoch_n in range(start_epoch, epoch):
            dice_hard_value_list = []  #清空
            since = time.time()
            for n_batch in range(n_batch_train):
                batch_x, batch_y = sess.run([train_x, train_y])
                ##########################   数据增强   ###################################
                batch_x = batch_x / 255.0  # 归一化,加了这句话loss值小了几十倍
                batch_x, batch_y = augmentImages(batch_x, batch_y)
                ##########################   end   #######################################
                # 训练一个step
                _, loss_value, dice_hard_value, summary_str, step = sess.run(
                    [train_step, loss, dice_hard, summary_op, global_step],
                    feed_dict={
                        x: batch_x,
                        y: batch_y
                    })
                # 显示结果batch_size
                dk.print_effect_message(epoch_n, n_batch, n_batch_train,
                                        loss_value, dice_hard_value)
                # 保存summary
                if (step + 1) % 20 == 0:
                    summary_writer.add_summary(summary_str, step)
                # 保存结果
                dice_hard_value_list.append(dice_hard_value)

            # 显示进度、耗时、最小最大平均值
            seconds_mean = (time.time() - since) / n_batch_train
            dk.print_progress_and_time_massge(seconds_mean, step, total_step,
                                              dice_hard_value_list)

            # 保存model
            if (((epoch_n + 1) % save_epoch_n)) == 0:
                print('epoch_n :{} saving movdel.......'.format(epoch_n))
                saver.save(sess,
                           os.path.join(ckpt, 'model_{}.ckpt'.format(epoch_n)),
                           global_step=global_step)

        dk.stop_threads(coord, threads)
Esempio n. 2
0
n_batch_train = int(train_data_number //batch_size)
os.makedirs(ckpt,exist_ok=True)
session_config = dk.set_gpu()

if  __name__== '__main__':
    with tf.Session(config = session_config) as sess:
        # 入口
        train_x, train_y = create_inputs(is_train)
        # train_y = tf.reshape(train_y,labels_shape)
        x = tf.placeholder(tf.float32, shape=input_shape)
        y = tf.placeholder(tf.float32, shape=labels_shape)
        # 构建网络和预测
        prediction = model(images= x, is_train =is_train,size= input_shape,l2_reg =0.0001 )
        # 求loss
        # loss = dk.cross_entropy_loss(prediction, y)
        the_loss = get_loss('bce_dice')
        loss = the_loss(y, prediction,labels_shape_vec)
        # 设置优化器
        global_step, train_step = dk.set_optimizer(num_batches_per_epoch=n_batch_train, loss=loss)
        # 求dice_hard,不合适用acc
        dice_hard = dk.dice_hard(y, prediction, threshold=0.5, axis=[1, 2, 3], smooth=1e-5)
        # accuracy = dk.get_acc(prediction, y)
        # 初始化变量
        coord, threads = dk.init_variables_and_start_thread(sess)
        # 设置训练日志
        summary_dict = {'loss':loss,'dice_hard':dice_hard}
        summary_writer, summary_op = dk.set_summary(sess,logdir,summary_dict)
        # 恢复model
        saver,start_epoch = dk.restore_model(sess, ckpt, restore_model=restore_model)        # 显示参数量
        dk.show_parament_numbers()
        # 若恢复model,则重新计算start_epoch继续
Esempio n. 3
0
if __name__ == '__main__':
    with tf.Session(config=session_config) as sess:
        # 入口
        train_x, train_y = create_inputs(is_train)
        x = tf.placeholder(tf.float32, shape=input_shape)
        y = tf.placeholder(tf.float32, shape=labels_shape)
        # 构建网络和预测
        prediction = model(images=x,
                           is_train=is_train,
                           size=input_shape,
                           l2_reg=0.0001)
        # 求loss
        # the_loss = get_loss('bce_dice')
        # the_loss = get_loss('bce_dice_focus')
        # the_loss = get_loss('bce_dice_margin')
        the_loss = get_loss('dice_margin_focus')
        # the_loss = get_loss('bce_dice_margin_focus')
        loss = the_loss(y, prediction, labels_shape_vec)
        # 设置优化器
        global_step, train_step = dk.set_optimizer(
            lr_range=lr_range, num_batches_per_epoch=n_batch_train, loss=loss)
        # 求dice_hard,不合适用acc
        dice_hard = dk.dice_hard(y,
                                 prediction,
                                 threshold=0.5,
                                 axis=[1, 2, 3],
                                 smooth=1e-5)
        # dice_hard = dk.iou_metric(prediction, y)

        # 初始化变量
        coord, threads = dk.init_variables_and_start_thread(sess)