Esempio n. 1
0
        logging.info("Network Structure: \n" +
                     '|\n'.join(map(str, model.net_config)))
    if args.meas_lat:
        latency_cpu = utils.latency_measure(model, (3, 224, 224),
                                            1,
                                            2000,
                                            mode='cpu')
        logging.info('latency_cpu (batch 1): %.2fms' % latency_cpu)
        latency_gpu = utils.latency_measure(model, (3, 224, 224),
                                            32,
                                            5000,
                                            mode='gpu')
        logging.info('latency_gpu (batch 32): %.2fms' % latency_gpu)
    params = utils.count_parameters_in_MB(model)
    logging.info("Params = %.2fMB" % params)
    mult_adds = comp_multadds(model, input_size=config.data.input_size)
    logging.info("Mult-Adds = %.2fMB" % mult_adds)

    model = nn.DataParallel(model)

    # whether to resume from a checkpoint
    if config.optim.if_resume:
        utils.load_model(model, config.optim.resume.load_path)
        start_epoch = config.optim.resume.load_epoch + 1
    else:
        start_epoch = 0

    model = model.cuda()

    if config.optim.label_smooth:
        criterion = utils.cross_entropy_with_label_smoothing
Esempio n. 2
0
    search_optim = Optimizer(super_model, criterion, config)

    scheduler = get_lr_scheduler(config, search_optim.weight_optimizer,
                                 imagenet.train_num_examples)
    scheduler.last_step = start_epoch * (
        imagenet.train_num_examples // config.data.batch_size + 1)

    search_trainer = SearchTrainer(train_queue, valid_queue, search_optim,
                                   criterion, scheduler, config, args)

    betas, head_alphas, stack_alphas = super_model.module.display_arch_params()
    derived_archs = arch_gener.derive_archs(betas, head_alphas, stack_alphas)
    derived_model = der_Net('|'.join(map(str, derived_archs)))
    logging.info(
        "Derived Model Mult-Adds = %.2fMB" %
        comp_multadds(derived_model, input_size=config.data.input_size))
    logging.info("Derived Model Num Params = %.2fMB",
                 utils.count_parameters_in_MB(derived_model))

    best_epoch = [0, 0, 0]  # [epoch, acc_top1, acc_top5]
    rec_list = []
    for epoch in range(start_epoch, config.train_params.epochs):
        # training part1: update the architecture parameters
        if epoch >= config.search_params.arch_update_epoch:
            search_stage = 1
            search_optim.set_param_grad_state('Arch')
            train_acc_top1, train_acc_top5, train_obj, sub_obj, batch_time = search_trainer.train(
                super_model, epoch, 'Arch', search_stage)
            logging.info(
                'EPOCH%d Arch Train_acc  top1 %.2f top5 %.2f loss %.4f %s %.2f batch_time %.3f',
                epoch, train_acc_top1, train_acc_top5, train_obj,
Esempio n. 3
0
    cudnn.benchmark = True
    cudnn.enabled = True
    
    logging.info("args = %s", args)
    logging.info('Training with config:')
    logging.info(pprint.pformat(config))

    config.net_config, net_type = utils.load_net_config(os.path.join(args.load_path, 'net_config'))

    derivedNetwork = getattr(model_derived, '%s_Net' % net_type.upper())
    model = derivedNetwork(config.net_config, config=config)
    
    logging.info("Network Structure: \n" + '\n'.join(map(str, model.net_config)))
    logging.info("Params = %.2fMB" % utils.count_parameters_in_MB(model))
    logging.info("Mult-Adds = %.2fMB" % comp_multadds(model, input_size=config.data.input_size))

    model = model.cuda()
    model = nn.DataParallel(model)
    utils.load_model(model, os.path.join(args.load_path, 'weights.pt'))

    imagenet = imagenet_data.ImageNet12(trainFolder=os.path.join(args.data_path, 'train'),
                            testFolder=os.path.join(args.data_path, 'val'),
                            num_workers=config.data.num_workers,
                            data_config=config.data)
    valid_queue = imagenet.getTestLoader(config.data.batch_size)
    trainer = Trainer(None, valid_queue, None, None, 
                        None, config, args.report_freq)

    with torch.no_grad():
        val_acc_top1, val_acc_top5, valid_obj, batch_time = trainer.infer(model)
Esempio n. 4
0
def main():
    np.random.seed(args.seed)
    cudnn.benchmark = True
    torch.manual_seed(args.seed)
    cudnn.enabled = True
    torch.cuda.manual_seed(args.seed)
    logging.info("args = %s", args)

    genotype = eval("genotypes.%s" % args.arch)
    model = Network(args.init_channels, NUM_CLASSES, args.layers,
                    config.optim.auxiliary, genotype)

    start_epoch = 0
    model.eval()
    model.drop_path_prob = args.drop_path_prob * 0
    # compute the params as well as the multi-adds
    params = count_parameters_in_MB(model)
    logging.info("Params = %.2fMB" % params)
    mult_adds = comp_multadds(model, input_size=config.data.input_size)
    logging.info("Mult-Adds = %.2fMB" % mult_adds)

    model.train()
    if len(args.gpus) > 1:
        model = nn.DataParallel(model)
    model = model.cuda()
    if config.optim.label_smooth:
        criterion = CrossEntropyLabelSmooth(NUM_CLASSES,
                                            config.optim.smooth_alpha)
    else:
        criterion = nn.CrossEntropyLoss()
    criterion = criterion.cuda()

    optimizer = torch.optim.SGD(model.parameters(),
                                config.optim.init_lr,
                                momentum=config.optim.momentum,
                                weight_decay=config.optim.weight_decay)

    imagenet = imagenet_data.ImageNet12(
        trainFolder=os.path.join(args.data_path, 'train'),
        testFolder=os.path.join(args.data_path, 'val'),
        num_workers=config.data.num_workers,
        type_of_data_augmentation=config.data.type_of_data_aug,
        data_config=config.data,
        size_images=config.data.input_size[1],
        scaled_size=config.data.scaled_size[1])
    train_queue, valid_queue = imagenet.getTrainTestLoader(
        config.data.batch_size)

    if config.optim.lr_schedule == 'cosine':
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            optimizer, float(config.train_params.epochs))

    trainer = Trainer(train_queue, valid_queue, criterion, config,
                      args.report_freq)
    best_epoch = [0, 0, 0]  # [epoch, acc_top1, acc_top5]
    lr = config.optim.init_lr
    for epoch in range(start_epoch, config.train_params.epochs):
        if config.optim.lr_schedule == 'cosine':
            scheduler.step()
            current_lr = scheduler.get_lr()[0]
        elif config.optim.lr_schedule == 'linear':  # with warmup initial
            optimizer, current_lr = adjust_lr(optimizer,
                                              config.train_params.epochs, lr,
                                              epoch)
        else:
            print('Wrong lr type, exit')
            sys.exit(1)
        if epoch < 5:  # Warmup epochs for 5
            current_lr = lr * (epoch + 1) / 5.0
            for param_group in optimizer.param_groups:
                param_group['lr'] = current_lr
            logging.info('Warming-up Epoch: %d, LR: %e', epoch,
                         lr * (epoch + 1) / 5.0)

        logging.info('Epoch: %d lr %e', epoch, current_lr)
        if len(args.gpus) > 1:
            model.module.drop_path_prob = args.drop_path_prob * epoch / config.train_params.epochs
        else:
            model.drop_path_prob = args.drop_path_prob * epoch / config.train_params.epochs
        train_acc_top1, train_acc_top5, train_obj, batch_time, data_time = trainer.train(
            model, optimizer, epoch)
        with torch.no_grad():
            val_acc_top1, val_acc_top5, batch_time, data_time = trainer.infer(
                model, epoch)
        if val_acc_top1 > best_epoch[1]:
            best_epoch = [epoch, val_acc_top1, val_acc_top5]
            if epoch >= 0:  # 120
                utils.save_checkpoint(
                    {
                        'epoch': epoch + 1,
                        'state_dict': model.module.state_dict(),
                        'best_acc_top1': val_acc_top1,
                        'optimizer': optimizer.state_dict(),
                    },
                    save_path=args.save,
                    epoch=epoch,
                    is_best=True)
                if len(args.gpus) > 1:
                    utils.save(
                        model.module.state_dict(),
                        os.path.join(
                            args.save,
                            'weights_{}_{}.pt'.format(epoch, val_acc_top1)))
                else:
                    utils.save(
                        model.state_dict(),
                        os.path.join(
                            args.save,
                            'weights_{}_{}.pt'.format(epoch, val_acc_top1)))

        logging.info('BEST EPOCH %d  val_top1 %.2f val_top5 %.2f',
                     best_epoch[0], best_epoch[1], best_epoch[2])
        logging.info(
            'epoch: {} \t train_acc_top1: {:.4f} \t train_loss: {:.4f} \t val_acc_top1: {:.4f}'
            .format(epoch, train_acc_top1, train_obj, val_acc_top1))

    logging.info("Params = %.2fMB" % params)
    logging.info("Mult-Adds = %.2fMB" % mult_adds)