print('epoch %d end at %s' % (epoch, str(end)))
    print('epoch %d train loss: %f' % (epoch, train_loss))
    print('epoch %d dev loss: %f' % (epoch, dev_loss))
    print('epoch %d dev accuracy: %f' % (epoch, epcoh_accuracy))
    print('best epoch now: %d\n' % best_epoch)

    log.write('epoch %d end at %s\n' % (epoch, str(end)))
    log.write('epoch %d train loss: %f\n' % (epoch, train_loss))
    log.write('epoch %d dev loss: %f\n' % (epoch, dev_loss))
    log.write('epoch %d dev accuracy: %f\n' % (epoch, epcoh_accuracy))
    log.write('best epoch now: %d\n\n' % best_epoch)

end_time = datetime.now()
print('train end at %s\n' % str(end_time))
log.write('train end at %s\n\n' % str(end_time))

timedelta = end_time - start_time
print('train cost time: %s\n' % str(timedelta))
print('best epoch last: %d\n' % best_epoch)

log.write('train cost time: %s\n\n' % str(timedelta))
log.write('best epoch last: %d\n\n' % best_epoch)

plot.plot_loss(all_train_loss,
               all_dev_loss,
               folder_path=folder_path,
               title='%s' % model_name)
plot.plot_accuracy(all_dev_accuracy,
                   folder_path=folder_path,
                   title='%s' % model_name)
Esempio n. 2
0
    train_y = np.load("output/train_anno.npy")
    train_names = np.load("output/train_names.npy")

    for name in runs[:1]:
        feature_type = name.split('_')[0]
        test_x = np.load("output/val_{}.npy".format(feature_type))
        train_x = np.load("output/train_{}.npy".format(feature_type))

        num_train, input_dim = train_x.shape
        _, output_dim = train_y.shape

        if TRAIN:
            loss_hist = simple_nn.train(input_dim, output_dim, train_x,
                                        train_y, test_x, test_y, name)
            plot.plot_loss(loss_hist, name)
        model = simple_nn.load(name)

        # make predictions on the test data
        train_loss = model.evaluate(train_x, train_y, verbose=0)
        val_loss = model.evaluate(test_x, test_y, verbose=0)
        print("{} - train: {}, val {}".format(model.metrics_names, train_loss,
                                              val_loss))
        with open('logs/nn_losses.txt', 'a') as f:
            f.write('{} {} {} {}\n'.format(int(time.time()), name, train_loss,
                                           val_loss))
        '''
        print("[INFO] predicting...")
        preds = model.predict(test_x)

        evaluate.evaluate_point_normal(test_y, preds)