Esempio n. 1
0
 def generate_batched_itr(self,
                          data_itr,
                          beam_size=None,
                          cuda=False,
                          timer=None):
     """Iterate over a batched dataset and yield individual translations.
     Args:
         cuda (bool, optional): use GPU for generation
         timer (StopwatchMeter, optional): time generations
     """
     for sample in data_itr:
         s = utils.move_to_cuda(sample) if cuda else sample
         if "net_input" not in s:
             continue
         input = s["net_input"]
         # model.forward normally channels prev_output_tokens into the decoder
         # separately, but SequenceGenerator directly calls model.encoder
         encoder_input = {
             k: v
             for k, v in input.items() if k != "prev_output_tokens"
         }
         if timer is not None:
             timer.start()
         with torch.no_grad():
             hypos = self.generate(encoder_input)
         if timer is not None:
             timer.stop(sum(len(h[0]["tokens"]) for h in hypos))
         for i, id in enumerate(s["id"].data):
             # remove padding
             src = utils.strip_pad(input["src_tokens"].data[i, :], self.pad)
             ref = (utils.strip_pad(s["target"].data[i, :], self.pad)
                    if s["target"] is not None else None)
             yield id, src, ref, hypos[i]
    def generate_batched_itr(
        self,
        data_itr,
        maxlen_a=None,
        maxlen_b=None,
        cuda=False,
        timer=None,
        prefix_size=0,
    ):
        """Iterate over a batched dataset and yield individual translations.

        Args:
            maxlen_a/b: generate sequences of maximum length ax + b,
                where x is the source sentence length.
            cuda: use GPU for generation
            timer: StopwatchMeter for timing generations.
        """

        for sample in data_itr:
            if "net_input" not in sample:
                continue
            if timer is not None:
                timer.start()
            with torch.no_grad():
                hypos = self.generate(
                    self.models,
                    sample,
                    prefix_tokens=sample["target"][:, :prefix_size]
                    if prefix_size > 0
                    else None,
                )
            if timer is not None:
                timer.stop(sample["ntokens"])
            for i, id in enumerate(sample["id"]):
                # remove padding
                src = utils.strip_pad(sample["net_input"]["src_tokens"][i, :], self.pad)
                ref = utils.strip_pad(sample["target"][i, :], self.pad)
                yield id, src, ref, hypos[i]
Esempio n. 3
0
    def forward(self, model, sample, reduce=True):
        """Compute the loss for the given sample.

        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """

        assert hasattr(model.decoder, 'adaptive_softmax') and model.decoder.adaptive_softmax is not None
        adaptive_softmax = model.decoder.adaptive_softmax

        net_output = model(**sample['net_input'])
        orig_target = model.get_targets(sample, net_output)

        nsentences = orig_target.size(0)
        orig_target = orig_target.view(-1)

        bsz = orig_target.size(0)

        logits, target = adaptive_softmax(net_output[0], orig_target)
        assert len(target) == len(logits)

        loss = net_output[0].new(1 if reduce else bsz).zero_()

        for i in range(len(target)):
            if target[i] is not None:
                assert (target[i].min() >= 0 and target[i].max() <= logits[i].size(1))
                loss += F.cross_entropy(
                    logits[i],
                    target[i],
                    ignore_index=self.padding_idx,
                    reduction='sum' if reduce else 'none',
                )

        orig = utils.strip_pad(orig_target, self.padding_idx)
        ntokens = orig.numel()
        sample_size = sample['target'].size(0) if self.sentence_avg else ntokens
        logging_output = {
            'loss': loss.data,
            'ntokens': ntokens,
            'nsentences': nsentences,
            'sample_size': sample_size,
        }
        return loss, sample_size, logging_output
Esempio n. 4
0
def _main(args, output_file):
    logging.basicConfig(
        format='%(asctime)s | %(levelname)s | %(name)s | %(message)s',
        datefmt='%Y-%m-%d %H:%M:%S',
        level=logging.INFO,
        stream=output_file,
    )
    logger = logging.getLogger('generate')

    utils.import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    logger.info(args)

    # Fix seed for stochastic decoding
    if args.seed is not None and not args.no_seed_provided:
        np.random.seed(args.seed)
        utils.set_torch_seed(args.seed)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)

    # Set dictionaries
    try:
        src_dict = getattr(task, 'source_dictionary', None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        utils.split_paths(args.path),
        arg_overrides=eval(args.model_overrides),
        task=task,
        suffix=getattr(args, "checkpoint_suffix", ""),
    )

    # Optimize ensemble for generation
    for model in models:
        model.prepare_for_inference_(args)
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]
        ),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)
    progress = progress_bar.progress_bar(
        itr,
        log_format=args.log_format,
        log_interval=args.log_interval,
        default_log_format=('tqdm' if not args.no_progress_bar else 'none'),
    )

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(models, args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    scorer = scoring.build_scorer(args, tgt_dict)

    num_sentences = 0
    has_target = True
    wps_meter = TimeMeter()
    for sample in progress:
        sample = utils.move_to_cuda(sample) if use_cuda else sample
        if 'net_input' not in sample:
            continue

        prefix_tokens = None
        if args.prefix_size > 0:
            prefix_tokens = sample['target'][:, :args.prefix_size]

        constraints = None
        if "constraints" in sample:
            constraints = sample["constraints"]

        gen_timer.start()
        hypos = task.inference_step(generator, models, sample, prefix_tokens=prefix_tokens, constraints=constraints)
        num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
        gen_timer.stop(num_generated_tokens)

        for i, sample_id in enumerate(sample['id'].tolist()):
            has_target = sample['target'] is not None

            # Remove padding
            if 'src_tokens' in sample['net_input']:
                src_tokens = utils.strip_pad(sample['net_input']['src_tokens'][i, :], tgt_dict.pad())
            else:
                src_tokens = None

            target_tokens = None
            if has_target:
                target_tokens = utils.strip_pad(sample['target'][i, :], tgt_dict.pad()).int().cpu()

            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = task.dataset(args.gen_subset).src.get_original_text(sample_id)
                target_str = task.dataset(args.gen_subset).tgt.get_original_text(sample_id)
            else:
                if src_dict is not None:
                    src_str = src_dict.string(src_tokens, args.remove_bpe)
                else:
                    src_str = ""
                if has_target:
                    target_str = tgt_dict.string(
                        target_tokens,
                        args.remove_bpe,
                        escape_unk=True,
                        extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
                    )

            src_str = decode_fn(src_str)
            if has_target:
                target_str = decode_fn(target_str)

            if not args.quiet:
                if src_dict is not None:
                    print('S-{}\t{}'.format(sample_id, src_str), file=output_file)
                if has_target:
                    print('T-{}\t{}'.format(sample_id, target_str), file=output_file)

            # Process top predictions
            for j, hypo in enumerate(hypos[i][:args.nbest]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                    extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
                )
                detok_hypo_str = decode_fn(hypo_str)
                if not args.quiet:
                    score = hypo['score'] / math.log(2)  # convert to base 2
                    # original hypothesis (after tokenization and BPE)
                    print('H-{}\t{}\t{}'.format(sample_id, score, hypo_str), file=output_file)
                    # detokenized hypothesis
                    print('D-{}\t{}\t{}'.format(sample_id, score, detok_hypo_str), file=output_file)
                    print('P-{}\t{}'.format(
                        sample_id,
                        ' '.join(map(
                            lambda x: '{:.4f}'.format(x),
                            # convert from base e to base 2
                            hypo['positional_scores'].div_(math.log(2)).tolist(),
                        ))
                    ), file=output_file)

                    if args.print_alignment:
                        print('A-{}\t{}'.format(
                            sample_id,
                            ' '.join(['{}-{}'.format(src_idx, tgt_idx) for src_idx, tgt_idx in alignment])
                        ), file=output_file)

                    if args.print_step:
                        print('I-{}\t{}'.format(sample_id, hypo['steps']), file=output_file)

                    if getattr(args, 'retain_iter_history', False):
                        for step, h in enumerate(hypo['history']):
                            _, h_str, _ = utils.post_process_prediction(
                                hypo_tokens=h['tokens'].int().cpu(),
                                src_str=src_str,
                                alignment=None,
                                align_dict=None,
                                tgt_dict=tgt_dict,
                                remove_bpe=None,
                            )
                            print('E-{}_{}\t{}'.format(sample_id, step, h_str), file=output_file)

                # Score only the top hypothesis
                if has_target and j == 0:
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        target_tokens = tgt_dict.encode_line(target_str, add_if_not_exist=True)
                        hypo_tokens = tgt_dict.encode_line(detok_hypo_str, add_if_not_exist=True)
                    if hasattr(scorer, 'add_string'):
                        scorer.add_string(target_str, detok_hypo_str)
                    else:
                        scorer.add(target_tokens, hypo_tokens)

        wps_meter.update(num_generated_tokens)
        progress.log({'wps': round(wps_meter.avg)})
        num_sentences += sample["nsentences"] if "nsentences" in sample else sample['id'].numel()

    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info('Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format(
        num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg))
    if has_target:
        if args.bpe and not args.sacrebleu:
            if args.remove_bpe:
                logger.warning("BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization")
            else:
                logger.warning("If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words.  Use --sacrebleu for standard 13a BLEU tokenization")
        # use print to be consistent with other main outputs: S-, H-, T-, D- and so on
        print(
            'Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()),
            file=output_file)

    return scorer
Esempio n. 5
0
def main(args, task=None, model_state=None):
    check_args(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 4000000
    logger.info(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    if task is None:
        # Load dataset splits
        task = tasks.setup_task(args)
        task.load_dataset(args.gen_subset)
        logger.info("| {} {} {} examples".format(
            args.data, args.gen_subset, len(task.dataset(args.gen_subset))))

    label_path = os.path.join(args.data, "{}.word".format(args.gen_subset))
    labels = []
    with open(label_path, "r") as f:
        for line in f:
            labels.append(line)

    # Set dictionary
    tgt_dict = task.target_dictionary

    logger.info("| decoding with criterion {}".format(args.criterion))

    # Load ensemble

    if args.load_emissions:
        models, criterions = [], []
    else:
        logger.info("| loading model(s) from {}".format(args.path))
        models, criterions, _ = load_models_and_criterions(
            args.path,
            data_path=args.data,
            arg_overrides=eval(args.model_overrides),  # noqa
            task=task,
            model_state=model_state,
        )
        optimize_models(args, use_cuda, models)

    # hack to pass transitions to W2lDecoder
    if args.criterion == "asg_loss":
        trans = criterions[0].asg.trans.data
        args.asg_transitions = torch.flatten(trans).tolist()

    # Load dataset (possibly sharded)
    itr = get_dataset_itr(args, task, models)

    # Initialize generator
    gen_timer = StopwatchMeter()

    def build_generator(args):
        w2l_decoder = getattr(args, "w2l_decoder", None)
        if w2l_decoder == "viterbi":
            from speech_recognition.w2l_decoder import W2lViterbiDecoder

            return W2lViterbiDecoder(args, task.target_dictionary)
        elif w2l_decoder == "kenlm":
            from speech_recognition.w2l_decoder import W2lKenLMDecoder

            return W2lKenLMDecoder(args, task.target_dictionary)
        elif w2l_decoder == "fairseqlm":
            from speech_recognition.w2l_decoder import W2lFairseqLMDecoder

            return W2lFairseqLMDecoder(args, task.target_dictionary)
        elif w2l_decoder == "ctc_decoder":
            from speech_recognition.ctc_decoder import CTCDecoder

            return CTCDecoder(args, task.target_dictionary)
        else:
            return super().build_generator(args)

    generator = build_generator(args)

    if args.load_emissions:
        generator = ExistingEmissionsDecoder(
            generator, np.load(args.load_emissions, allow_pickle=True))
        logger.info("loaded emissions from " + args.load_emissions)

    num_sentences = 0

    if args.results_path is not None and not os.path.exists(args.results_path):
        os.makedirs(args.results_path)

    max_source_pos = (utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models]), )

    if max_source_pos is not None:
        max_source_pos = max_source_pos[0]
        if max_source_pos is not None:
            max_source_pos = max_source_pos[0] - 1

    if args.dump_emissions:
        emissions = {}
    if args.dump_features:
        features = {}
        models[0].bert.proj = None
    else:
        res_files = prepare_result_files(args)
    errs_t = 0
    lengths_t = 0
    with progress_bar.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()
        for sample in t:
            sample = utils.move_to_cuda(sample) if use_cuda else sample
            if "net_input" not in sample:
                continue

            prefix_tokens = None
            if args.prefix_size > 0:
                prefix_tokens = sample["target"][:, :args.prefix_size]

            gen_timer.start()
            if args.dump_emissions:
                with torch.no_grad():
                    encoder_out = models[0](**sample["net_input"])
                    emm = models[0].get_normalized_probs(encoder_out,
                                                         log_probs=True)
                    emm = emm.transpose(0, 1).cpu().numpy()
                    for i, id in enumerate(sample["id"]):
                        emissions[id.item()] = emm[i]
                    continue
            elif args.dump_features:
                with torch.no_grad():
                    encoder_out = models[0](**sample["net_input"])
                    feat = encoder_out["encoder_out"].transpose(
                        0, 1).cpu().numpy()
                    for i, id in enumerate(sample["id"]):
                        padding = encoder_out["encoder_padding_mask"][i].cpu().numpy() \
                            if encoder_out["encoder_padding_mask"] is not None else None
                        features[id.item()] = (feat[i], padding)
                    continue
            hypos = task.inference_step(generator, models, sample,
                                        prefix_tokens)
            tokens_len = 0
            for h in hypos:
                try:
                    h_len = len(h[0]["tokens"])
                    tokens_len += h_len
                except Exception as ex:
                    print(ex)
            num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
            gen_timer.stop(num_generated_tokens)

            for i, sample_id in enumerate(sample["id"].tolist()):
                speaker = None
                # id = task.dataset(args.gen_subset).ids[int(sample_id)]
                id = sample_id
                toks = sample["target"][
                    i, :] if 'target_label' not in sample else sample[
                        "target_label"][i, :]
                target_tokens = (utils.strip_pad(toks,
                                                 tgt_dict.pad()).int().cpu())
                # Process top predictions
                errs, length = process_predictions(args, hypos[i], None,
                                                   tgt_dict, target_tokens,
                                                   res_files, speaker, id,
                                                   labels)
                errs_t += errs
                lengths_t += length

            wps_meter.update(num_generated_tokens)
            t.log({"wps": round(wps_meter.avg)})
            num_sentences += sample[
                "nsentences"] if "nsentences" in sample else sample[
                    "id"].numel()

    wer = None
    if args.dump_emissions:
        emm_arr = []
        for i in range(len(emissions)):
            emm_arr.append(emissions[i])
        np.save(args.dump_emissions, emm_arr)
        logger.info(
            f"saved {len(emissions)} emissions to {args.dump_emissions}")
    elif args.dump_features:
        feat_arr = []
        for i in range(len(features)):
            feat_arr.append(features[i])
        np.save(args.dump_features, feat_arr)
        logger.info(f"saved {len(features)} emissions to {args.dump_features}")
    else:
        if lengths_t > 0:
            wer = errs_t * 100.0 / lengths_t
            logger.info(f"WER: {wer}")

        logger.info("| Processed {} sentences ({} tokens) in {:.1f}s ({:.2f}"
                    "sentences/s, {:.2f} tokens/s)".format(
                        num_sentences,
                        gen_timer.n,
                        gen_timer.sum,
                        num_sentences / gen_timer.sum,
                        1.0 / gen_timer.avg,
                    ))
        logger.info("| Generate {} with beam={}".format(
            args.gen_subset, args.beam))
    return task, wer
Esempio n. 6
0
    def forward(self, model, sample, reduce=True):
        """Compute the loss for the given sample.
        Returns a tuple with three elements:
        1) the loss
        2) the sample size, which is used as the denominator for the gradient
        3) logging outputs to display while training
        """
        lm_logits, output_metadata = model(**sample["net_input"])

        # reshape lm_logits from (N,T,C) to (N*T,C)
        lm_logits = lm_logits.view(-1, lm_logits.size(-1))
        lm_targets = sample['lm_target'].view(-1)
        lm_loss = compute_cross_entropy_loss(lm_logits, lm_targets,
                                             self.padding_idx)

        # compute the number of tokens for which loss is computed. This is used
        # to normalize the loss
        ntokens = utils.strip_pad(lm_targets, self.padding_idx).numel()
        loss = lm_loss / ntokens
        nsentences = sample['nsentences']
        # nsentences = 0

        # Compute sentence loss if masked_lm_only is False
        sentence_loss = None
        if not self.masked_lm_only:
            sentence_logits = output_metadata['sentence_logits']
            sentence_targets = sample['sentence_target'].view(-1)
            # This needs to be recomputed due to some differences between
            # TokenBlock and BlockPair dataset. This can be resolved with a
            # refactor of BERTModel which we will do in the future.
            # TODO: Remove this after refactor of BERTModel
            nsentences = sentence_targets.size(0)

            # Check for logits being none which can happen when remove_heads
            # is set to true in the BERT model. Ideally we should set
            # masked_lm_only to true in this case, but that requires some
            # refactor in the BERT model.
            if sentence_logits is not None:
                sentence_loss = compute_cross_entropy_loss(
                    sentence_logits, sentence_targets)

                loss += self.nsp_loss_weight * (sentence_loss / nsentences)

        # NOTE: as we are summing up per token mlm loss and per sentence nsp loss
        # we don't need to use sample_size as denominator for the gradient
        # here sample_size is just used for logging
        sample_size = 1
        logging_output = {
            'loss':
            utils.item(loss.data) if reduce else loss.data,
            'lm_loss':
            utils.item(lm_loss.data) if reduce else lm_loss.data,
            # sentence loss is not always computed
            'sentence_loss':
            ((utils.item(sentence_loss.data) if reduce else sentence_loss.data)
             if sentence_loss is not None else 0.0),
            'ntokens':
            ntokens,
            'nsentences':
            nsentences,
            'sample_size':
            sample_size,
        }
        return loss, sample_size, logging_output
Esempio n. 7
0
def main(args):
    start_time = time.time()
    total_translate_time = 0

    utils.import_user_module(args)

    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    logger.info(args)

    # Fix seed for stochastic decoding
    if args.seed is not None and not args.no_seed_provided:
        np.random.seed(args.seed)
        utils.set_torch_seed(args.seed)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(os.pathsep),
        arg_overrides=eval(args.model_overrides),
        task=task,
        suffix=getattr(args, "checkpoint_suffix", ""),
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.prepare_for_inference_(args)
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Initialize generator
    generator = task.build_generator(models, args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models])

    if args.constraints:
        logger.warning(
            "NOTE: Constrained decoding currently assumes a shared subword vocabulary."
        )

    if args.buffer_size > 1:
        logger.info('Sentence buffer size: %s', args.buffer_size)
    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info('Type the input sentence and press return:')
    start_id = 0
    for inputs in buffered_read(args.input, args.buffer_size):
        results = []
        for batch in make_batches(inputs, args, task, max_positions,
                                  encode_fn):
            bsz = batch.src_tokens.size(0)
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            constraints = batch.constraints
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()
                if constraints is not None:
                    constraints = constraints.cuda()

            sample = {
                'net_input': {
                    'src_tokens': src_tokens,
                    'src_lengths': src_lengths,
                },
            }
            translate_start_time = time.time()
            translations = task.inference_step(generator,
                                               models,
                                               sample,
                                               constraints=constraints)
            translate_time = time.time() - translate_start_time
            total_translate_time += translate_time
            list_constraints = [[] for _ in range(bsz)]
            if args.constraints:
                list_constraints = [unpack_constraints(c) for c in constraints]
            for i, (id,
                    hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                constraints = list_constraints[i]
                results.append((start_id + id, src_tokens_i, hypos, {
                    "constraints": constraints,
                    "time": translate_time / len(translations)
                }))

        # sort output to match input order
        for id_, src_tokens, hypos, info in sorted(results,
                                                   key=lambda x: x[0]):
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                print('S-{}\t{}'.format(id_, src_str))
                print("W-{}\t{:.3f}\tseconds".format(id_, info["time"]))
                for constraint in info["constraints"]:
                    print("C-{}\t{}".format(
                        id_, tgt_dict.string(constraint, args.remove_bpe)))

            # Process top predictions
            for hypo in hypos[:min(len(hypos), args.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                    extra_symbols_to_ignore=get_symbols_to_strip_from_output(
                        generator),
                )
                detok_hypo_str = decode_fn(hypo_str)
                score = hypo['score'] / math.log(2)  # convert to base 2
                # original hypothesis (after tokenization and BPE)
                print('H-{}\t{}\t{}'.format(id_, score, hypo_str))
                # detokenized hypothesis
                print('D-{}\t{}\t{}'.format(id_, score, detok_hypo_str))
                print('P-{}\t{}'.format(
                    id_,
                    ' '.join(
                        map(
                            lambda x: '{:.4f}'.format(x),
                            # convert from base e to base 2
                            hypo['positional_scores'].div_(math.log(2)
                                                           ).tolist(),
                        ))))
                if args.print_alignment:
                    alignment_str = " ".join(
                        ["{}-{}".format(src, tgt) for src, tgt in alignment])
                    print('A-{}\t{}'.format(id_, alignment_str))

        # update running id_ counter
        start_id += len(inputs)

    logger.info("Total time: {:.3f} seconds; translation time: {:.3f}".format(
        time.time() - start_time, total_translate_time))
Esempio n. 8
0
    def generate(self, models, sample, **kwargs):
        """Score a batch of translations."""
        net_input = sample['net_input']

        def batch_for_softmax(dec_out, target):
            # assumes decoder_out[0] is the only thing needed (may not be correct for future models!)
            first, rest = dec_out[0], dec_out[1:]
            bsz, tsz, dim = first.shape
            if bsz * tsz < self.softmax_batch:
                yield dec_out, target, True
            else:
                flat = first.contiguous().view(1, -1, dim)
                flat_tgt = target.contiguous().view(flat.shape[:-1])
                s = 0
                while s < flat.size(1):
                    e = s + self.softmax_batch
                    yield (flat[:, s:e], ) + rest, flat_tgt[:, s:e], False
                    s = e

        def gather_target_probs(probs, target):
            probs = probs.gather(
                dim=2,
                index=target.unsqueeze(-1),
            )
            return probs

        orig_target = sample['target']

        # compute scores for each model in the ensemble
        avg_probs = None
        avg_attn = None
        for model in models:
            model.eval()
            decoder_out = model(**net_input)
            attn = decoder_out[1] if len(decoder_out) > 1 else None
            if type(attn) is dict:
                attn = attn.get('attn', None)

            batched = batch_for_softmax(decoder_out, orig_target)
            probs, idx = None, 0
            for bd, tgt, is_single in batched:
                sample['target'] = tgt
                curr_prob = model.get_normalized_probs(
                    bd, log_probs=len(models) == 1, sample=sample).data
                if is_single:
                    probs = gather_target_probs(curr_prob, orig_target)
                else:
                    if probs is None:
                        probs = curr_prob.new(orig_target.numel())
                    step = curr_prob.size(0) * curr_prob.size(1)
                    end = step + idx
                    tgt_probs = gather_target_probs(
                        curr_prob.view(tgt.shape + (curr_prob.size(-1), )),
                        tgt)
                    probs[idx:end] = tgt_probs.view(-1)
                    idx = end
                sample['target'] = orig_target

            probs = probs.view(sample['target'].shape)

            if avg_probs is None:
                avg_probs = probs
            else:
                avg_probs.add_(probs)
            if attn is not None and torch.is_tensor(attn):
                attn = attn.data
                if avg_attn is None:
                    avg_attn = attn
                else:
                    avg_attn.add_(attn)
        if len(models) > 1:
            avg_probs.div_(len(models))
            avg_probs.log_()
            if avg_attn is not None:
                avg_attn.div_(len(models))

        bsz = avg_probs.size(0)
        hypos = []
        start_idxs = sample[
            'start_indices'] if 'start_indices' in sample else [0] * bsz
        for i in range(bsz):
            # remove padding from ref
            ref = utils.strip_pad(sample['target'][i, start_idxs[i]:], self.pad) \
                if sample['target'] is not None else None
            tgt_len = ref.numel()
            avg_probs_i = avg_probs[i][start_idxs[i]:start_idxs[i] + tgt_len]
            score_i = avg_probs_i.sum() / tgt_len
            if avg_attn is not None:
                avg_attn_i = avg_attn[i]
                if self.compute_alignment:
                    alignment = utils.extract_hard_alignment(
                        avg_attn_i,
                        sample['net_input']['src_tokens'][i],
                        sample['target'][i],
                        self.pad,
                        self.eos,
                    )
                else:
                    alignment = None
            else:
                avg_attn_i = alignment = None
            hypos.append([{
                'tokens': ref,
                'score': score_i,
                'attention': avg_attn_i,
                'alignment': alignment,
                'positional_scores': avg_probs_i,
            }])
        return hypos