def generate_batched_itr(self, data_itr, beam_size=None, cuda=False, timer=None): """Iterate over a batched dataset and yield individual translations. Args: cuda (bool, optional): use GPU for generation timer (StopwatchMeter, optional): time generations """ for sample in data_itr: s = utils.move_to_cuda(sample) if cuda else sample if "net_input" not in s: continue input = s["net_input"] # model.forward normally channels prev_output_tokens into the decoder # separately, but SequenceGenerator directly calls model.encoder encoder_input = { k: v for k, v in input.items() if k != "prev_output_tokens" } if timer is not None: timer.start() with torch.no_grad(): hypos = self.generate(encoder_input) if timer is not None: timer.stop(sum(len(h[0]["tokens"]) for h in hypos)) for i, id in enumerate(s["id"].data): # remove padding src = utils.strip_pad(input["src_tokens"].data[i, :], self.pad) ref = (utils.strip_pad(s["target"].data[i, :], self.pad) if s["target"] is not None else None) yield id, src, ref, hypos[i]
def generate_batched_itr( self, data_itr, maxlen_a=None, maxlen_b=None, cuda=False, timer=None, prefix_size=0, ): """Iterate over a batched dataset and yield individual translations. Args: maxlen_a/b: generate sequences of maximum length ax + b, where x is the source sentence length. cuda: use GPU for generation timer: StopwatchMeter for timing generations. """ for sample in data_itr: if "net_input" not in sample: continue if timer is not None: timer.start() with torch.no_grad(): hypos = self.generate( self.models, sample, prefix_tokens=sample["target"][:, :prefix_size] if prefix_size > 0 else None, ) if timer is not None: timer.stop(sample["ntokens"]) for i, id in enumerate(sample["id"]): # remove padding src = utils.strip_pad(sample["net_input"]["src_tokens"][i, :], self.pad) ref = utils.strip_pad(sample["target"][i, :], self.pad) yield id, src, ref, hypos[i]
def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ assert hasattr(model.decoder, 'adaptive_softmax') and model.decoder.adaptive_softmax is not None adaptive_softmax = model.decoder.adaptive_softmax net_output = model(**sample['net_input']) orig_target = model.get_targets(sample, net_output) nsentences = orig_target.size(0) orig_target = orig_target.view(-1) bsz = orig_target.size(0) logits, target = adaptive_softmax(net_output[0], orig_target) assert len(target) == len(logits) loss = net_output[0].new(1 if reduce else bsz).zero_() for i in range(len(target)): if target[i] is not None: assert (target[i].min() >= 0 and target[i].max() <= logits[i].size(1)) loss += F.cross_entropy( logits[i], target[i], ignore_index=self.padding_idx, reduction='sum' if reduce else 'none', ) orig = utils.strip_pad(orig_target, self.padding_idx) ntokens = orig.numel() sample_size = sample['target'].size(0) if self.sentence_avg else ntokens logging_output = { 'loss': loss.data, 'ntokens': ntokens, 'nsentences': nsentences, 'sample_size': sample_size, } return loss, sample_size, logging_output
def _main(args, output_file): logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, stream=output_file, ) logger = logging.getLogger('generate') utils.import_user_module(args) if args.max_tokens is None and args.max_sentences is None: args.max_tokens = 12000 logger.info(args) # Fix seed for stochastic decoding if args.seed is not None and not args.no_seed_provided: np.random.seed(args.seed) utils.set_torch_seed(args.seed) use_cuda = torch.cuda.is_available() and not args.cpu # Load dataset splits task = tasks.setup_task(args) task.load_dataset(args.gen_subset) # Set dictionaries try: src_dict = getattr(task, 'source_dictionary', None) except NotImplementedError: src_dict = None tgt_dict = task.target_dictionary # Load ensemble logger.info('loading model(s) from {}'.format(args.path)) models, _model_args = checkpoint_utils.load_model_ensemble( utils.split_paths(args.path), arg_overrides=eval(args.model_overrides), task=task, suffix=getattr(args, "checkpoint_suffix", ""), ) # Optimize ensemble for generation for model in models: model.prepare_for_inference_(args) if args.fp16: model.half() if use_cuda: model.cuda() # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(args.replace_unk) # Load dataset (possibly sharded) itr = task.get_batch_iterator( dataset=task.dataset(args.gen_subset), max_tokens=args.max_tokens, max_sentences=args.max_sentences, max_positions=utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models] ), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=args.required_batch_size_multiple, num_shards=args.num_shards, shard_id=args.shard_id, num_workers=args.num_workers, ).next_epoch_itr(shuffle=False) progress = progress_bar.progress_bar( itr, log_format=args.log_format, log_interval=args.log_interval, default_log_format=('tqdm' if not args.no_progress_bar else 'none'), ) # Initialize generator gen_timer = StopwatchMeter() generator = task.build_generator(models, args) # Handle tokenization and BPE tokenizer = encoders.build_tokenizer(args) bpe = encoders.build_bpe(args) def decode_fn(x): if bpe is not None: x = bpe.decode(x) if tokenizer is not None: x = tokenizer.decode(x) return x scorer = scoring.build_scorer(args, tgt_dict) num_sentences = 0 has_target = True wps_meter = TimeMeter() for sample in progress: sample = utils.move_to_cuda(sample) if use_cuda else sample if 'net_input' not in sample: continue prefix_tokens = None if args.prefix_size > 0: prefix_tokens = sample['target'][:, :args.prefix_size] constraints = None if "constraints" in sample: constraints = sample["constraints"] gen_timer.start() hypos = task.inference_step(generator, models, sample, prefix_tokens=prefix_tokens, constraints=constraints) num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos) gen_timer.stop(num_generated_tokens) for i, sample_id in enumerate(sample['id'].tolist()): has_target = sample['target'] is not None # Remove padding if 'src_tokens' in sample['net_input']: src_tokens = utils.strip_pad(sample['net_input']['src_tokens'][i, :], tgt_dict.pad()) else: src_tokens = None target_tokens = None if has_target: target_tokens = utils.strip_pad(sample['target'][i, :], tgt_dict.pad()).int().cpu() # Either retrieve the original sentences or regenerate them from tokens. if align_dict is not None: src_str = task.dataset(args.gen_subset).src.get_original_text(sample_id) target_str = task.dataset(args.gen_subset).tgt.get_original_text(sample_id) else: if src_dict is not None: src_str = src_dict.string(src_tokens, args.remove_bpe) else: src_str = "" if has_target: target_str = tgt_dict.string( target_tokens, args.remove_bpe, escape_unk=True, extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator), ) src_str = decode_fn(src_str) if has_target: target_str = decode_fn(target_str) if not args.quiet: if src_dict is not None: print('S-{}\t{}'.format(sample_id, src_str), file=output_file) if has_target: print('T-{}\t{}'.format(sample_id, target_str), file=output_file) # Process top predictions for j, hypo in enumerate(hypos[i][:args.nbest]): hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens=hypo['tokens'].int().cpu(), src_str=src_str, alignment=hypo['alignment'], align_dict=align_dict, tgt_dict=tgt_dict, remove_bpe=args.remove_bpe, extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator), ) detok_hypo_str = decode_fn(hypo_str) if not args.quiet: score = hypo['score'] / math.log(2) # convert to base 2 # original hypothesis (after tokenization and BPE) print('H-{}\t{}\t{}'.format(sample_id, score, hypo_str), file=output_file) # detokenized hypothesis print('D-{}\t{}\t{}'.format(sample_id, score, detok_hypo_str), file=output_file) print('P-{}\t{}'.format( sample_id, ' '.join(map( lambda x: '{:.4f}'.format(x), # convert from base e to base 2 hypo['positional_scores'].div_(math.log(2)).tolist(), )) ), file=output_file) if args.print_alignment: print('A-{}\t{}'.format( sample_id, ' '.join(['{}-{}'.format(src_idx, tgt_idx) for src_idx, tgt_idx in alignment]) ), file=output_file) if args.print_step: print('I-{}\t{}'.format(sample_id, hypo['steps']), file=output_file) if getattr(args, 'retain_iter_history', False): for step, h in enumerate(hypo['history']): _, h_str, _ = utils.post_process_prediction( hypo_tokens=h['tokens'].int().cpu(), src_str=src_str, alignment=None, align_dict=None, tgt_dict=tgt_dict, remove_bpe=None, ) print('E-{}_{}\t{}'.format(sample_id, step, h_str), file=output_file) # Score only the top hypothesis if has_target and j == 0: if align_dict is not None or args.remove_bpe is not None: # Convert back to tokens for evaluation with unk replacement and/or without BPE target_tokens = tgt_dict.encode_line(target_str, add_if_not_exist=True) hypo_tokens = tgt_dict.encode_line(detok_hypo_str, add_if_not_exist=True) if hasattr(scorer, 'add_string'): scorer.add_string(target_str, detok_hypo_str) else: scorer.add(target_tokens, hypo_tokens) wps_meter.update(num_generated_tokens) progress.log({'wps': round(wps_meter.avg)}) num_sentences += sample["nsentences"] if "nsentences" in sample else sample['id'].numel() logger.info('NOTE: hypothesis and token scores are output in base 2') logger.info('Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format( num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg)) if has_target: if args.bpe and not args.sacrebleu: if args.remove_bpe: logger.warning("BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization") else: logger.warning("If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words. Use --sacrebleu for standard 13a BLEU tokenization") # use print to be consistent with other main outputs: S-, H-, T-, D- and so on print( 'Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()), file=output_file) return scorer
def main(args, task=None, model_state=None): check_args(args) if args.max_tokens is None and args.max_sentences is None: args.max_tokens = 4000000 logger.info(args) use_cuda = torch.cuda.is_available() and not args.cpu if task is None: # Load dataset splits task = tasks.setup_task(args) task.load_dataset(args.gen_subset) logger.info("| {} {} {} examples".format( args.data, args.gen_subset, len(task.dataset(args.gen_subset)))) label_path = os.path.join(args.data, "{}.word".format(args.gen_subset)) labels = [] with open(label_path, "r") as f: for line in f: labels.append(line) # Set dictionary tgt_dict = task.target_dictionary logger.info("| decoding with criterion {}".format(args.criterion)) # Load ensemble if args.load_emissions: models, criterions = [], [] else: logger.info("| loading model(s) from {}".format(args.path)) models, criterions, _ = load_models_and_criterions( args.path, data_path=args.data, arg_overrides=eval(args.model_overrides), # noqa task=task, model_state=model_state, ) optimize_models(args, use_cuda, models) # hack to pass transitions to W2lDecoder if args.criterion == "asg_loss": trans = criterions[0].asg.trans.data args.asg_transitions = torch.flatten(trans).tolist() # Load dataset (possibly sharded) itr = get_dataset_itr(args, task, models) # Initialize generator gen_timer = StopwatchMeter() def build_generator(args): w2l_decoder = getattr(args, "w2l_decoder", None) if w2l_decoder == "viterbi": from speech_recognition.w2l_decoder import W2lViterbiDecoder return W2lViterbiDecoder(args, task.target_dictionary) elif w2l_decoder == "kenlm": from speech_recognition.w2l_decoder import W2lKenLMDecoder return W2lKenLMDecoder(args, task.target_dictionary) elif w2l_decoder == "fairseqlm": from speech_recognition.w2l_decoder import W2lFairseqLMDecoder return W2lFairseqLMDecoder(args, task.target_dictionary) elif w2l_decoder == "ctc_decoder": from speech_recognition.ctc_decoder import CTCDecoder return CTCDecoder(args, task.target_dictionary) else: return super().build_generator(args) generator = build_generator(args) if args.load_emissions: generator = ExistingEmissionsDecoder( generator, np.load(args.load_emissions, allow_pickle=True)) logger.info("loaded emissions from " + args.load_emissions) num_sentences = 0 if args.results_path is not None and not os.path.exists(args.results_path): os.makedirs(args.results_path) max_source_pos = (utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models]), ) if max_source_pos is not None: max_source_pos = max_source_pos[0] if max_source_pos is not None: max_source_pos = max_source_pos[0] - 1 if args.dump_emissions: emissions = {} if args.dump_features: features = {} models[0].bert.proj = None else: res_files = prepare_result_files(args) errs_t = 0 lengths_t = 0 with progress_bar.build_progress_bar(args, itr) as t: wps_meter = TimeMeter() for sample in t: sample = utils.move_to_cuda(sample) if use_cuda else sample if "net_input" not in sample: continue prefix_tokens = None if args.prefix_size > 0: prefix_tokens = sample["target"][:, :args.prefix_size] gen_timer.start() if args.dump_emissions: with torch.no_grad(): encoder_out = models[0](**sample["net_input"]) emm = models[0].get_normalized_probs(encoder_out, log_probs=True) emm = emm.transpose(0, 1).cpu().numpy() for i, id in enumerate(sample["id"]): emissions[id.item()] = emm[i] continue elif args.dump_features: with torch.no_grad(): encoder_out = models[0](**sample["net_input"]) feat = encoder_out["encoder_out"].transpose( 0, 1).cpu().numpy() for i, id in enumerate(sample["id"]): padding = encoder_out["encoder_padding_mask"][i].cpu().numpy() \ if encoder_out["encoder_padding_mask"] is not None else None features[id.item()] = (feat[i], padding) continue hypos = task.inference_step(generator, models, sample, prefix_tokens) tokens_len = 0 for h in hypos: try: h_len = len(h[0]["tokens"]) tokens_len += h_len except Exception as ex: print(ex) num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos) gen_timer.stop(num_generated_tokens) for i, sample_id in enumerate(sample["id"].tolist()): speaker = None # id = task.dataset(args.gen_subset).ids[int(sample_id)] id = sample_id toks = sample["target"][ i, :] if 'target_label' not in sample else sample[ "target_label"][i, :] target_tokens = (utils.strip_pad(toks, tgt_dict.pad()).int().cpu()) # Process top predictions errs, length = process_predictions(args, hypos[i], None, tgt_dict, target_tokens, res_files, speaker, id, labels) errs_t += errs lengths_t += length wps_meter.update(num_generated_tokens) t.log({"wps": round(wps_meter.avg)}) num_sentences += sample[ "nsentences"] if "nsentences" in sample else sample[ "id"].numel() wer = None if args.dump_emissions: emm_arr = [] for i in range(len(emissions)): emm_arr.append(emissions[i]) np.save(args.dump_emissions, emm_arr) logger.info( f"saved {len(emissions)} emissions to {args.dump_emissions}") elif args.dump_features: feat_arr = [] for i in range(len(features)): feat_arr.append(features[i]) np.save(args.dump_features, feat_arr) logger.info(f"saved {len(features)} emissions to {args.dump_features}") else: if lengths_t > 0: wer = errs_t * 100.0 / lengths_t logger.info(f"WER: {wer}") logger.info("| Processed {} sentences ({} tokens) in {:.1f}s ({:.2f}" "sentences/s, {:.2f} tokens/s)".format( num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1.0 / gen_timer.avg, )) logger.info("| Generate {} with beam={}".format( args.gen_subset, args.beam)) return task, wer
def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ lm_logits, output_metadata = model(**sample["net_input"]) # reshape lm_logits from (N,T,C) to (N*T,C) lm_logits = lm_logits.view(-1, lm_logits.size(-1)) lm_targets = sample['lm_target'].view(-1) lm_loss = compute_cross_entropy_loss(lm_logits, lm_targets, self.padding_idx) # compute the number of tokens for which loss is computed. This is used # to normalize the loss ntokens = utils.strip_pad(lm_targets, self.padding_idx).numel() loss = lm_loss / ntokens nsentences = sample['nsentences'] # nsentences = 0 # Compute sentence loss if masked_lm_only is False sentence_loss = None if not self.masked_lm_only: sentence_logits = output_metadata['sentence_logits'] sentence_targets = sample['sentence_target'].view(-1) # This needs to be recomputed due to some differences between # TokenBlock and BlockPair dataset. This can be resolved with a # refactor of BERTModel which we will do in the future. # TODO: Remove this after refactor of BERTModel nsentences = sentence_targets.size(0) # Check for logits being none which can happen when remove_heads # is set to true in the BERT model. Ideally we should set # masked_lm_only to true in this case, but that requires some # refactor in the BERT model. if sentence_logits is not None: sentence_loss = compute_cross_entropy_loss( sentence_logits, sentence_targets) loss += self.nsp_loss_weight * (sentence_loss / nsentences) # NOTE: as we are summing up per token mlm loss and per sentence nsp loss # we don't need to use sample_size as denominator for the gradient # here sample_size is just used for logging sample_size = 1 logging_output = { 'loss': utils.item(loss.data) if reduce else loss.data, 'lm_loss': utils.item(lm_loss.data) if reduce else lm_loss.data, # sentence loss is not always computed 'sentence_loss': ((utils.item(sentence_loss.data) if reduce else sentence_loss.data) if sentence_loss is not None else 0.0), 'ntokens': ntokens, 'nsentences': nsentences, 'sample_size': sample_size, } return loss, sample_size, logging_output
def main(args): start_time = time.time() total_translate_time = 0 utils.import_user_module(args) if args.buffer_size < 1: args.buffer_size = 1 if args.max_tokens is None and args.max_sentences is None: args.max_sentences = 1 assert not args.sampling or args.nbest == args.beam, \ '--sampling requires --nbest to be equal to --beam' assert not args.max_sentences or args.max_sentences <= args.buffer_size, \ '--max-sentences/--batch-size cannot be larger than --buffer-size' logger.info(args) # Fix seed for stochastic decoding if args.seed is not None and not args.no_seed_provided: np.random.seed(args.seed) utils.set_torch_seed(args.seed) use_cuda = torch.cuda.is_available() and not args.cpu # Setup task, e.g., translation task = tasks.setup_task(args) # Load ensemble logger.info('loading model(s) from {}'.format(args.path)) models, _model_args = checkpoint_utils.load_model_ensemble( args.path.split(os.pathsep), arg_overrides=eval(args.model_overrides), task=task, suffix=getattr(args, "checkpoint_suffix", ""), ) # Set dictionaries src_dict = task.source_dictionary tgt_dict = task.target_dictionary # Optimize ensemble for generation for model in models: model.prepare_for_inference_(args) if args.fp16: model.half() if use_cuda: model.cuda() # Initialize generator generator = task.build_generator(models, args) # Handle tokenization and BPE tokenizer = encoders.build_tokenizer(args) bpe = encoders.build_bpe(args) def encode_fn(x): if tokenizer is not None: x = tokenizer.encode(x) if bpe is not None: x = bpe.encode(x) return x def decode_fn(x): if bpe is not None: x = bpe.decode(x) if tokenizer is not None: x = tokenizer.decode(x) return x # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(args.replace_unk) max_positions = utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models]) if args.constraints: logger.warning( "NOTE: Constrained decoding currently assumes a shared subword vocabulary." ) if args.buffer_size > 1: logger.info('Sentence buffer size: %s', args.buffer_size) logger.info('NOTE: hypothesis and token scores are output in base 2') logger.info('Type the input sentence and press return:') start_id = 0 for inputs in buffered_read(args.input, args.buffer_size): results = [] for batch in make_batches(inputs, args, task, max_positions, encode_fn): bsz = batch.src_tokens.size(0) src_tokens = batch.src_tokens src_lengths = batch.src_lengths constraints = batch.constraints if use_cuda: src_tokens = src_tokens.cuda() src_lengths = src_lengths.cuda() if constraints is not None: constraints = constraints.cuda() sample = { 'net_input': { 'src_tokens': src_tokens, 'src_lengths': src_lengths, }, } translate_start_time = time.time() translations = task.inference_step(generator, models, sample, constraints=constraints) translate_time = time.time() - translate_start_time total_translate_time += translate_time list_constraints = [[] for _ in range(bsz)] if args.constraints: list_constraints = [unpack_constraints(c) for c in constraints] for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)): src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad()) constraints = list_constraints[i] results.append((start_id + id, src_tokens_i, hypos, { "constraints": constraints, "time": translate_time / len(translations) })) # sort output to match input order for id_, src_tokens, hypos, info in sorted(results, key=lambda x: x[0]): if src_dict is not None: src_str = src_dict.string(src_tokens, args.remove_bpe) print('S-{}\t{}'.format(id_, src_str)) print("W-{}\t{:.3f}\tseconds".format(id_, info["time"])) for constraint in info["constraints"]: print("C-{}\t{}".format( id_, tgt_dict.string(constraint, args.remove_bpe))) # Process top predictions for hypo in hypos[:min(len(hypos), args.nbest)]: hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens=hypo['tokens'].int().cpu(), src_str=src_str, alignment=hypo['alignment'], align_dict=align_dict, tgt_dict=tgt_dict, remove_bpe=args.remove_bpe, extra_symbols_to_ignore=get_symbols_to_strip_from_output( generator), ) detok_hypo_str = decode_fn(hypo_str) score = hypo['score'] / math.log(2) # convert to base 2 # original hypothesis (after tokenization and BPE) print('H-{}\t{}\t{}'.format(id_, score, hypo_str)) # detokenized hypothesis print('D-{}\t{}\t{}'.format(id_, score, detok_hypo_str)) print('P-{}\t{}'.format( id_, ' '.join( map( lambda x: '{:.4f}'.format(x), # convert from base e to base 2 hypo['positional_scores'].div_(math.log(2) ).tolist(), )))) if args.print_alignment: alignment_str = " ".join( ["{}-{}".format(src, tgt) for src, tgt in alignment]) print('A-{}\t{}'.format(id_, alignment_str)) # update running id_ counter start_id += len(inputs) logger.info("Total time: {:.3f} seconds; translation time: {:.3f}".format( time.time() - start_time, total_translate_time))
def generate(self, models, sample, **kwargs): """Score a batch of translations.""" net_input = sample['net_input'] def batch_for_softmax(dec_out, target): # assumes decoder_out[0] is the only thing needed (may not be correct for future models!) first, rest = dec_out[0], dec_out[1:] bsz, tsz, dim = first.shape if bsz * tsz < self.softmax_batch: yield dec_out, target, True else: flat = first.contiguous().view(1, -1, dim) flat_tgt = target.contiguous().view(flat.shape[:-1]) s = 0 while s < flat.size(1): e = s + self.softmax_batch yield (flat[:, s:e], ) + rest, flat_tgt[:, s:e], False s = e def gather_target_probs(probs, target): probs = probs.gather( dim=2, index=target.unsqueeze(-1), ) return probs orig_target = sample['target'] # compute scores for each model in the ensemble avg_probs = None avg_attn = None for model in models: model.eval() decoder_out = model(**net_input) attn = decoder_out[1] if len(decoder_out) > 1 else None if type(attn) is dict: attn = attn.get('attn', None) batched = batch_for_softmax(decoder_out, orig_target) probs, idx = None, 0 for bd, tgt, is_single in batched: sample['target'] = tgt curr_prob = model.get_normalized_probs( bd, log_probs=len(models) == 1, sample=sample).data if is_single: probs = gather_target_probs(curr_prob, orig_target) else: if probs is None: probs = curr_prob.new(orig_target.numel()) step = curr_prob.size(0) * curr_prob.size(1) end = step + idx tgt_probs = gather_target_probs( curr_prob.view(tgt.shape + (curr_prob.size(-1), )), tgt) probs[idx:end] = tgt_probs.view(-1) idx = end sample['target'] = orig_target probs = probs.view(sample['target'].shape) if avg_probs is None: avg_probs = probs else: avg_probs.add_(probs) if attn is not None and torch.is_tensor(attn): attn = attn.data if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) if len(models) > 1: avg_probs.div_(len(models)) avg_probs.log_() if avg_attn is not None: avg_attn.div_(len(models)) bsz = avg_probs.size(0) hypos = [] start_idxs = sample[ 'start_indices'] if 'start_indices' in sample else [0] * bsz for i in range(bsz): # remove padding from ref ref = utils.strip_pad(sample['target'][i, start_idxs[i]:], self.pad) \ if sample['target'] is not None else None tgt_len = ref.numel() avg_probs_i = avg_probs[i][start_idxs[i]:start_idxs[i] + tgt_len] score_i = avg_probs_i.sum() / tgt_len if avg_attn is not None: avg_attn_i = avg_attn[i] if self.compute_alignment: alignment = utils.extract_hard_alignment( avg_attn_i, sample['net_input']['src_tokens'][i], sample['target'][i], self.pad, self.eos, ) else: alignment = None else: avg_attn_i = alignment = None hypos.append([{ 'tokens': ref, 'score': score_i, 'attention': avg_attn_i, 'alignment': alignment, 'positional_scores': avg_probs_i, }]) return hypos