Esempio n. 1
0
def main(run_string):
    ###### load training data
    data = 'bh_50'
    data_suffix = '_tr_1.csv'
    data_dir = '../../data/uci/'
    data_prefix = data_dir + data
    x_tr, y_tr = input_tools.get_x_y_tr_data(data_prefix, data_suffix)
    x_tr = np.genfromtxt('../../data/linear_input_data.txt', delimiter=',')
    y_tr = x_tr
    batch_size = x_tr.shape[0]
    ###### get weight information
    weights_dir = '../../data/'  #for forward test
    a1_size = 0
    num_inputs = tools.get_num_inputs(x_tr)
    num_outputs = tools.get_num_outputs(y_tr)
    layer_sizes = [1, num_inputs] * 2
    m_trainable_arr = [True, True] * 2 + [False]
    b_trainable_arr = [True, True] * 2 + [False]
    num_weights = tools.calc_num_weights3(num_inputs, layer_sizes, num_outputs,
                                          m_trainable_arr, b_trainable_arr)
    ###### check shapes of training data
    x_tr, y_tr = tools.reshape_x_y_twod(x_tr, y_tr)
    ###### setup prior
    hyper_type = "deterministic"  # "stochastic" or "deterministic"
    var_type = "deterministic"  # "stochastic" or "deterministic"
    weight_shapes = tools.get_weight_shapes3(num_inputs, layer_sizes,
                                             num_outputs, m_trainable_arr,
                                             b_trainable_arr)
    dependence_lengths = tools.get_degen_dependence_lengths(weight_shapes,
                                                            independent=True)
    if hyper_type == "deterministic" and var_type == "deterministic":
        prior_types = [4]
        prior_hyperparams = [[0., 1.]]
        param_prior_types = [0]
        prior = inverse_priors.inverse_prior(prior_types, prior_hyperparams,
                                             dependence_lengths,
                                             param_prior_types, num_weights)
        n_stoc = 0
        n_stoc_var = 0
    elif hyper_type == "stochastic" and var_type == "deterministic":
        granularity = 'single'
        hyper_dependence_lengths = tools.get_hyper_dependence_lengths(
            weight_shapes, granularity)
        hyperprior_types = [9]
        prior_types = [4]
        hyperprior_params = [[1. / 2., 1. / (2. * 100)]]
        prior_hyperparams = [0.]
        param_hyperprior_types = [0]
        param_prior_types = [0]
        n_stoc = len(hyper_dependence_lengths)
        prior = isp.inverse_stoc_hyper_prior(
            hyperprior_types, prior_types, hyperprior_params,
            prior_hyperparams, hyper_dependence_lengths, dependence_lengths,
            param_hyperprior_types, param_prior_types, n_stoc, num_weights)
        n_stoc_var = 0
    elif hyper_type == "stochastic" and var_type == "stochastic":
        granularity = 'single'
        hyper_dependence_lengths = tools.get_hyper_dependence_lengths(
            weight_shapes, granularity)
        var_dependence_lengths = [1]
        n_stoc_var = len(var_dependence_lengths)
        hyperprior_types = [9]
        var_prior_types = [10]
        prior_types = [4]
        hyperprior_params = [[1. / 2., 1. / (2. * 100)]]
        var_prior_params = [[1. / 2., 1. / (2. * 100)]]
        prior_hyperparams = [0.]
        param_hyperprior_types = [0]
        var_param_prior_types = [0]
        param_prior_types = [0]
        n_stoc = len(hyper_dependence_lengths)
        prior = isvp.inverse_stoc_var_hyper_prior(
            hyperprior_types, var_prior_types, prior_types, hyperprior_params,
            var_prior_params, prior_hyperparams, hyper_dependence_lengths,
            var_dependence_lengths, dependence_lengths, param_hyperprior_types,
            var_param_prior_types, param_prior_types, n_stoc, n_stoc_var,
            num_weights)
    ###### test prior output from nn setup
    if "nn_prior_test" in run_string:
        prior_tests.nn_prior_test(prior, n_stoc + n_stoc_var + num_weights)
    #set up np model
    np_nn = npms.mlp_ResNet_2
    npm = np_model(np_nn, x_tr, y_tr, batch_size, layer_sizes, m_trainable_arr,
                   b_trainable_arr, n_stoc_var)
    ll_type = 'gauss'  # 'gauss', 'av_gauss', 'categorical_crossentropy', 'av_categorical_crossentropy'
    npm.setup_LL(ll_type)
    ###### test llhood output
    if "forward_test_linear" in run_string:
        forward_tests.forward_test_linear([npm], num_weights + n_stoc_var,
                                          weights_dir)
    ###### setup polychord
    nDerived = 0
    settings = PyPolyChord.settings.PolyChordSettings(
        n_stoc + n_stoc_var + num_weights, nDerived)
    settings.base_dir = './np_chains/'
    settings.file_root = data + "_slp_sh_sv_sm"
    settings.nlive = 1000
    ###### run polychord
    if "polychord1" in run_string:
        PyPolyChord.run_polychord(npm, n_stoc, n_stoc_var, num_weights,
                                  nDerived, settings, prior,
                                  polychord_tools.dumper)
Esempio n. 2
0
def inverse_stoc_hyper_priors_test14():
    """
	real nn arch with 16 nn params, two hyperparams, input_size granularity, 
	degen dependent params
	"""
    num_inputs = 1
    layer_sizes = [3, 2]
    num_outputs = 1
    print "num weights"
    n_dims = tools.calc_num_weights(num_inputs, layer_sizes, num_outputs)
    print tools.calc_num_weights(num_inputs, layer_sizes, num_outputs)
    weight_shapes = tools.get_weight_shapes(num_inputs, layer_sizes,
                                            num_outputs)
    print "weight shapes"
    print tools.get_weight_shapes(num_inputs, layer_sizes, num_outputs)
    granularity = 'input_size'
    hyper_dependence_lengths = tools.get_hyper_dependence_lengths(
        weight_shapes, granularity)
    n_stoc = len(hyper_dependence_lengths)
    print "n_stoc"
    print n_stoc
    print "granularity"
    print tools.get_hyper_dependence_lengths(weight_shapes, granularity)
    print "number of weights per layer"
    print tools.calc_num_weights_layers(weight_shapes)
    dependence_lengths = tools.get_degen_dependence_lengths(weight_shapes)
    print "degen dependence lengths"
    print tools.get_degen_dependence_lengths(weight_shapes)
    hyperprior_types = [9, 7]
    prior_types = [4, 5]
    hyperprior_params = [[1., 2.], [2., 0.]]
    prior_hyperparams = [0., 1.]
    param_hyperprior_types = [0, 1, 0, 0, 1, 1, 1, 0, 0]
    param_prior_types = [0, 1, 0, 1, 0, 0, 1, 1, 0]
    prior = isp.inverse_stoc_hyper_prior(hyperprior_types, prior_types,
                                         hyperprior_params, prior_hyperparams,
                                         hyper_dependence_lengths,
                                         dependence_lengths,
                                         param_hyperprior_types,
                                         param_prior_types, n_stoc, n_dims)
    p = np.array([
        0.1, 0.5, 0.6, 0.7, 0.8, 0.9, 0.4, 0.2, 0.1, 0.5, 0.7, 0.8, 0.9, 0.4,
        0.2, 0.1, 0.5, 0.9, 0.2, 0.7, 0.4, 0.9, 0.3, 0.5, 0.6, 0.8
    ])
    prior(p)
    u = [0., 0., 0., 1., 1., 1., 0., 0., 1., 1., 0., 0., 0., 0., 1., 1., 0.]
    v = [
        4.35688457, 4.35688457, 4.35688457, 2., 2., 2., 1.47740087, 1.47740087,
        1.28886271, 1.28886271, 2., 2., 2., 2., 2., 2.9938003, 4.35688457
    ]
    print isp.gaussian_prior()(p[9], u[0], v[0])
    print isp.gaussian_prior()(p[10], u[1], v[1])
    print isp.gaussian_prior()(p[11], u[2], v[2])
    print isp.laplace_prior()(p[12], u[3], v[3])
    print isp.laplace_prior()(p[13], u[4], v[4])
    print isp.laplace_prior()(p[14], u[5], v[5])
    print isp.gaussian_prior()(p[15], u[6], v[6])
    print isp.gaussian_prior()(p[16], u[7], v[7])
    print isp.laplace_prior()(p[17], u[8], v[8])
    print isp.laplace_prior()(p[18], u[9], v[9])
    print isp.gaussian_prior()(p[19], u[10], v[10])
    print isp.gaussian_prior()(p[20], u[11], v[11])
    print isp.gaussian_prior()(p[21], u[12], v[12])
    print isp.gaussian_prior()(p[22], u[13], v[13])
    print isp.laplace_prior()(p[23], u[14], v[14])
    print isp.laplace_prior()(p[24], u[15], v[15])
    print isp.gaussian_prior()(p[25], u[16], v[16])
Esempio n. 3
0
def inverse_stoc_hyper_priors_test7():
    """
	real nn arch with 16 nn params, one hyperparam, single granularity, 
	degen dependent params (2 priors)
	"""
    num_inputs = 1
    layer_sizes = [3, 2]
    num_outputs = 1
    print "num weights"
    n_dims = tools.calc_num_weights(num_inputs, layer_sizes, num_outputs)
    print tools.calc_num_weights(num_inputs, layer_sizes, num_outputs)
    weight_shapes = tools.get_weight_shapes(num_inputs, layer_sizes,
                                            num_outputs)
    print "weight shapes"
    print tools.get_weight_shapes(num_inputs, layer_sizes, num_outputs)
    granularity = 'single'
    hyper_dependence_lengths = tools.get_hyper_dependence_lengths(
        weight_shapes, granularity)
    n_stoc = len(hyper_dependence_lengths)
    print "number of weights per layer"
    print tools.calc_num_weights_layers(weight_shapes)
    dependence_lengths = tools.get_degen_dependence_lengths(weight_shapes)
    print "degen dependence lengths"
    print tools.get_degen_dependence_lengths(weight_shapes)
    hyperprior_types = [9]
    prior_types = [4, 5]
    hyperprior_params = [[1., 2.]]
    prior_hyperparams = [0., 1.]
    param_hyperprior_types = [0]
    param_prior_types = [0, 1, 0, 1, 0, 0, 1, 1, 0]
    prior = isp.inverse_stoc_hyper_prior(hyperprior_types, prior_types,
                                         hyperprior_params, prior_hyperparams,
                                         hyper_dependence_lengths,
                                         dependence_lengths,
                                         param_hyperprior_types,
                                         param_prior_types, n_stoc, n_dims)
    p = np.array([
        0.1, 0.5, 0.6, 0.7, 0.8, 0.9, 0.4, 0.2, 0.1, 0.5, 0.7, 0.8, 0.9, 0.4,
        0.2, 0.1, 0.5, 0.9
    ])
    prior(p)
    u = [0., 0., 0., 1., 1., 1., 0., 0., 1., 1., 0., 0., 0., 0., 1., 1., 0.]
    v = [
        4.35688457, 4.35688457, 4.35688457, 4.35688457, 4.35688457, 4.35688457,
        4.35688457, 4.35688457, 4.35688457, 4.35688457, 4.35688457, 4.35688457,
        4.35688457, 4.35688457, 4.35688457, 4.35688457, 4.35688457
    ]
    print isp.gaussian_prior()(p[1], u[0], v[0])
    print isp.gaussian_prior()(p[2], u[1], v[1])
    print isp.gaussian_prior()(p[3], u[2], v[2])
    print isp.laplace_prior()(p[4], u[3], v[3])
    print isp.laplace_prior()(p[5], u[4], v[4])
    print isp.laplace_prior()(p[6], u[5], v[5])
    print isp.gaussian_prior()(p[7], u[6], v[6])
    print isp.gaussian_prior()(p[8], u[7], v[7])
    print isp.laplace_prior()(p[9], u[8], v[8])
    print isp.laplace_prior()(p[10], u[9], v[9])
    print isp.gaussian_prior()(p[11], u[10], v[10])
    print isp.gaussian_prior()(p[12], u[11], v[11])
    print isp.gaussian_prior()(p[13], u[12], v[12])
    print isp.gaussian_prior()(p[14], u[13], v[13])
    print isp.laplace_prior()(p[15], u[14], v[14])
    print isp.laplace_prior()(p[16], u[15], v[15])
    print isp.gaussian_prior()(p[17], u[16], v[16])
Esempio n. 4
0
def inverse_stoc_hyper_priors_test9():
    """
	real nn arch with 16 nn params, two hyperparams, layer granularity, 
	independent params
	"""
    num_inputs = 1
    layer_sizes = [3, 2]
    num_outputs = 1
    print "num weights"
    n_dims = tools.calc_num_weights(num_inputs, layer_sizes, num_outputs)
    print tools.calc_num_weights(num_inputs, layer_sizes, num_outputs)
    weight_shapes = tools.get_weight_shapes(num_inputs, layer_sizes,
                                            num_outputs)
    print "weight shapes"
    print tools.get_weight_shapes(num_inputs, layer_sizes, num_outputs)
    granularity = 'layer'
    hyper_dependence_lengths = tools.get_hyper_dependence_lengths(
        weight_shapes, granularity)
    n_stoc = len(hyper_dependence_lengths)
    print "number of weights per layer"
    print tools.calc_num_weights_layers(weight_shapes)
    dependence_lengths = tools.get_degen_dependence_lengths(weight_shapes,
                                                            independent=True)
    print "degen dependence lengths"
    print tools.get_degen_dependence_lengths(weight_shapes, independent=True)
    hyperprior_types = [9, 7]
    prior_types = [4]
    hyperprior_params = [[1., 2.], [2., 0.]]
    prior_hyperparams = [0.]
    param_hyperprior_types = [1, 0, 1]
    param_prior_types = [0]
    prior = isp.inverse_stoc_hyper_prior(hyperprior_types, prior_types,
                                         hyperprior_params, prior_hyperparams,
                                         hyper_dependence_lengths,
                                         dependence_lengths,
                                         param_hyperprior_types,
                                         param_prior_types, n_stoc, n_dims)
    p = np.array([
        0.1, 0.5, 0.6, 0.7, 0.8, 0.9, 0.4, 0.2, 0.1, 0.5, 0.7, 0.8, 0.9, 0.4,
        0.2, 0.1, 0.5, 0.9, 0.2, 0.7
    ])
    prior(p)
    u = [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]
    v = [
        2., 2., 2., 2., 2., 2., 1.6986436, 1.6986436, 1.6986436, 1.6986436,
        1.6986436, 1.6986436, 1.6986436, 1.6986436, 2., 2., 2.
    ]
    print isp.gaussian_prior()(p[3], u[0], v[0])
    print isp.gaussian_prior()(p[4], u[1], v[1])
    print isp.gaussian_prior()(p[5], u[2], v[2])
    print isp.gaussian_prior()(p[6], u[3], v[3])
    print isp.gaussian_prior()(p[7], u[4], v[4])
    print isp.gaussian_prior()(p[8], u[5], v[5])
    print isp.gaussian_prior()(p[9], u[6], v[6])
    print isp.gaussian_prior()(p[10], u[7], v[7])
    print isp.gaussian_prior()(p[11], u[8], v[8])
    print isp.gaussian_prior()(p[12], u[9], v[9])
    print isp.gaussian_prior()(p[13], u[10], v[10])
    print isp.gaussian_prior()(p[14], u[11], v[11])
    print isp.gaussian_prior()(p[15], u[12], v[12])
    print isp.gaussian_prior()(p[16], u[13], v[13])
    print isp.gaussian_prior()(p[17], u[14], v[14])
    print isp.gaussian_prior()(p[18], u[15], v[15])
    print isp.gaussian_prior()(p[19], u[16], v[16])
Esempio n. 5
0
	note file is saved to base_dir/file_root.paramnames
	"""
    param_names = get_pred_param_names(num_outputs)
    param_f = base_dir + file_root + '.paramnames'
    make_param_names_file(param_names, param_f)


if __name__ == '__main__':
    num_inputs = 1
    layer_sizes = [3, 2]
    num_outputs = 1
    print "num weights"
    n_dims = tools.calc_num_weights(num_inputs, layer_sizes, num_outputs)
    print tools.calc_num_weights(num_inputs, layer_sizes, num_outputs)
    weight_shapes = tools.get_weight_shapes(num_inputs, layer_sizes,
                                            num_outputs)
    print "weight shapes"
    print weight_shapes
    granularity = 'input_size'
    hyper_dependence_lengths = tools.get_hyper_dependence_lengths(
        weight_shapes, granularity)
    n_stoc = len(hyper_dependence_lengths)
    print "n_stoc"
    print n_stoc
    print "granularity"
    print hyper_dependence_lengths
    print "degen dependence lengths"
    print tools.get_degen_dependence_lengths(weight_shapes)
    print "param names"
    print get_param_names_sh(num_inputs, layer_sizes, num_outputs,
                             weight_shapes, granularity)