Esempio n. 1
0
    def check(self,progress):
        """
        Parameters
        ----------
        progress : float
            The current progress.

        Returns
        -------
        self.difficult : bool
            If ``True``, the branch is difficult because the progress rate is
            below the threshold.
        """
        time_now = time.time()
        one_minute = 60 # [s]
        if self.time_last is None:
            self.time_last = time_now
            self.progress_last = progress
        else:
            if time_now-self.time_last>one_minute:
                progress_rate = progress-self.progress_last # [%/min]
                self.time_last = time_now
                self.progress_last = progress
                self.difficult = progress_rate<self.threshold
                if self.difficult:
                    tools.info_print('current branch is difficult')
        return self.difficult
Esempio n. 2
0
 def status_publisher_thread(self):
     """Main loop thread which publishes the status."""
     while True:
         self.publisher_looprate.update()
         #-- Main code ---------------------------------------
         self.mutex.acquire()
         queue_length = len(self.task_queue)
         worker_status = copy.deepcopy(self.worker_proc_status)
         looprates = dict(
             publisher=self.publisher_looprate.get_frequency(),
             dispatcher=self.dispatcher_looprate.get_frequency(),
             collector=self.collector_looprate.get_frequency())
         self.mutex.release()
         self.status_publisher.update(worker_status, queue_length,
                                      looprates)
         #----------------------------------------------------
         self.mutex.acquire()
         stop = self.stop_threads
         if stop:
             self.status_publisher.update(self.worker_proc_status,
                                          len(self.task_queue),
                                          looprates,
                                          force=True)
             self.status_publisher.reset_estimators()
         self.mutex.release()
         if stop:
             tools.info_print('status publisher stopping')
             return
Esempio n. 3
0
 def offload_child_computation(self,child,location,which_alg,
                               prioritize_self=False,force='none'):
     """
     Offload partitioning for child to another worker process.
     
     Parameters
     ----------
     child : Tree
         The child for which computation is to be offloaded.
     location : string
         Location of the child in the overall tree.
     which_alg : {'ecc','lcss'}
         Which algorithm is to be run for the partitioning.
     prioritize_self : bool, optional
         If ``True``, ignore worker count but do respect recursion limit in
         terms of assigning work to self.
     force : {'none','offload','self'}, optional
         'offload' means choose to submit task to queue, no matter what;
         'self' means continue to work on task alone, no matter what; 'none'
         means no such forcing.
     """
     # --- Check worker count
     with open(global_vars.IDLE_COUNT_FILE,'rb') as f:
         try:
             idle_worker_count = pickle.load(f)
         except EOFError:
             # This may occur if the file is currently being written to by
             # the scheduler. In this case, conservatively assume that there
             # are no idle workers
             idle_worker_count = 0
     tools.info_print('idle worker count = %d'%(idle_worker_count))
     # --- Check recursion limit
     recursion_depth = (len(location)-
                        len(self.status_publisher.data['current_branch']))
     recurs_limit_reached = recursion_depth>global_vars.MAX_RECURSION_LIMIT
     if recurs_limit_reached:
         tools.error_print('recursion limit reached - submitting task'
                           ' to queue')
     # --- Check difficult of current branch
     progress = self.status_publisher.data['volume_filled_current']
     is_difficult = self.difficulty.check(progress)
     # --- Offloading logic
     if (force!='self' and
         (force=='offload' or recurs_limit_reached or is_difficult or
          (idle_worker_count>0 and not prioritize_self))):
         new_task = dict(branch_root=child,location=location,
                         action=which_alg)
         tools.info_print('sending task {}'.format(new_task))
         tools.MPI.nonblocking_send(new_task,dest=global_vars.SCHEDULER_PROC,
                                    tag=global_vars.NEW_BRANCH_TAG)
     else:
         self.status_publisher.update(algorithm=which_alg)
         self.alg_call(which_alg,child,location)
Esempio n. 4
0
 def update(self,active=None,failed=False,volume_filled_increment=None,simplex_count_increment=None,location=None,algorithm=None):
     """
     Update the data.
     
     Parameters
     ----------
     active : bool, optional
         ``True`` if the process is in the 'active' state.
     failed : bool, optional
         ``True`` if algorithm failed (worker process shutdown)
     volume_filled_increment : float, optional
         Volume of closed lead.
     simplex_count_increment : int, optional
         How many additional simplices added to partition.
     location : str, optional
         Current location in the tree.
     algorithm : {'ecc','lcss'}
         Which algorithm is to be run for the partitioning.
     """
     # Update time counters
     dt = time.time()-self.time_previous
     self.time_previous += dt
     if self.data['status']=='active':
         self.data['time_active_total'] += dt
         self.data['time_active_current'] += dt
     else:
         self.data['time_idle'] += dt
     if self.data['algorithm']=='ecc':
         self.data['time_ecc'] += dt
     else:
         self.data['time_lcss'] += dt
     # Update status
     if active is not None:
         self.data['status'] = 'active' if active else 'idle'
         tools.info_print('sending status update, status = %s'%(self.data['status']))
     if failed is True:
         self.data['status'] = 'failed'
     # Update volume counters
     if volume_filled_increment is not None:
         self.data['volume_filled_total'] += volume_filled_increment
         self.data['volume_filled_current'] += volume_filled_increment/self.volume_current
     # Update simplex counters
     if simplex_count_increment is not None:
         self.data['simplex_count_total'] += simplex_count_increment
         self.data['simplex_count_current'] += simplex_count_increment
     # Update location
     if location is not None:
         self.data['current_location'] = location
     # Update algorithm
     if algorithm is not None:
         self.data['algorithm'] = algorithm
     self.__write()
Esempio n. 5
0
 def ecc(self,node,location):
     """
     Implementation of [1] Algorithm 2 lines 4-16. Pass a tree root
     node and this grows the tree until its leaves are feasible partition
     cells. **Caution**: modifies ``node`` (passed by reference).
     
     [1] D. Malyuta, B. Acikmese, M. Cacan, and D. S. Bayard,
     "Partition-based feasible integer solution pre-computation for hybrid
     model predictive control," in 2019 European Control Conference
     (accepted), IFAC, jun 2019.
     
     Parameters
     ----------
     node : Tree
         Tree root. Sufficient that it just holds node.data.vertices for the
         simplex vertices.
     location : string
         Location in tree of this node. String where '0' at index i means
         take left child, '1' at index i means take right child (at depth
         value i).
     """
     self.status_publisher.update(location=location)
     tools.info_print('ecc at location = %s'%(location))
     c_R = np.average(node.data.vertices,axis=0) # Simplex barycenter
     if not self.oracle.P_theta(theta=c_R,check_feasibility=True):
         raise RuntimeError('STOP, Theta contains infeasible regions')
     else:
         delta_hat,vx_inputs_and_costs = self.oracle.V_R(node.data.vertices)
         if delta_hat is None:
             S_1,S_2 = tools.split_along_longest_edge(node.data.vertices)[:2]
             child_left = NodeData(vertices=S_1)            
             child_right = NodeData(vertices=S_2)
             node.grow(child_left,child_right)
             self.status_publisher.update(simplex_count_increment=1)
             # Recursive call for each resulting simplex
             self.offload_child_computation(node.left,location+'0','ecc')
             self.offload_child_computation(node.right,location+'1','ecc',
                                            prioritize_self=True)
         else:
             # Assign feasible commutation to simplex
             Nvx = node.data.vertices.shape[0]
             vertex_costs = np.array([vx_inputs_and_costs[i][1]
                                      for i in range(Nvx)])
             vertex_inputs = np.array([vx_inputs_and_costs[i][0]
                                       for i in range(Nvx)])
             node.data = NodeData(vertices=node.data.vertices,
                                  commutation=delta_hat,
                                  vertex_costs=vertex_costs,
                                  vertex_inputs=vertex_inputs)
             self.offload_child_computation(node,location,'lcss',
                                            force='self')
Esempio n. 6
0
    def __publish_idle_count(self):
        """
        Communicate to worker processes how many more workers are idle than
        there are tasks in the queue. If there are more workers idle then
        there are tasks in the queue, we want currently active workers to
        offload some of their work to these "slacking" workers.

        **NOT THREAD SAFE -- wrap with a mutex!**
        """
        num_tasks = len(self.task_queue)
        num_idle_workers = len(self.idle_workers)
        num_workers_with_no_work = max(num_idle_workers - num_tasks, 0)
        tools.info_print('idle worker count = %d' % (num_idle_workers))
        with open(global_vars.IDLE_COUNT_FILE, 'wb') as f:
            pickle.dump(num_workers_with_no_work, f)
Esempio n. 7
0
 def work_dispatcher_thread(self):
     """Main loop thread which dispatches tasks to workers."""
     while True:
         self.dispatcher_looprate.update()
         #-- Main code ---------------------------------------
         # Dispatch work to idle workers
         worker_count_changed = False
         while True:
             # Check exit condition
             self.mutex.acquire()
             num_tasks = len(self.task_queue)
             num_idle_workers = len(self.idle_workers)
             self.mutex.release()
             if num_tasks == 0 or num_idle_workers == 0:
                 break
             # Dispatch task to idle worker process
             self.mutex.acquire()
             task = self.task_queue.pop()
             idle_worker_idx = self.idle_workers.pop()
             self.mutex.release()
             tools.info_print(('dispatching task to worker (%d) (%d '
                               'tasks left), data {}' %
                               (self.get_worker_proc_num(idle_worker_idx),
                                num_tasks - 1)).format(task))
             self.mutex.acquire()
             tools.MPI.blocking_send(
                 task,
                 dest=self.get_worker_proc_num(idle_worker_idx),
                 tag=global_vars.NEW_WORK_TAG)
             self.mutex.release()
             self.mutex.acquire()
             self.worker2task[idle_worker_idx] = task
             self.mutex.release()
             worker_count_changed = True
         if worker_count_changed:
             self.mutex.acquire()
             self.__publish_idle_count()
             self.mutex.release()
         #----------------------------------------------------
         self.mutex.acquire()
         stop = self.stop_threads
         self.mutex.release()
         if stop:
             tools.info_print('work dispatcher stopping')
             return
Esempio n. 8
0
 def setup(self):
     # Optimization problem oracle
     suboptimality_settings = tools.MPI.broadcast(None,root=global_vars.SCHEDULER_PROC)
     self.oracle = example(abs_err=suboptimality_settings['abs_err'],
                           rel_err=suboptimality_settings['rel_err'])[2]
     tools.info_print('made oracle')
     # Checker whether a branch is "difficult"
     self.difficulty = DifficultyChecker()
     # Status publisher
     self.status_publisher = WorkerStatusPublisher()
     tools.MPI.global_sync() # wait for all slaves to setup
     # Algorithm call selector
     def alg_call(which_alg,branch,location):
         if which_alg=='ecc':
             return self.ecc(branch,location)
         else:
             return self.lcss(branch,location)
     self.alg_call = alg_call
Esempio n. 9
0
 def spin(self):
     """
     A loop which waits (by passive blocking) for the roots of a new branch
     to partition to be received from the scheduler process. When received,
     the branch is partitioned. When done, the partitioned branch ("grown
     tree") is sent back to the scheduler. The scheduler is responsible for
     aborting this loop.
     """
     while True:
         # Block until new data is received from scheduler
         tools.info_print('waiting for data')
         data = tools.MPI.blocking_receive(source=global_vars.SCHEDULER_PROC,
                                           tag=global_vars.NEW_WORK_TAG)
         tools.info_print('received data {}'.format(data))
         if data['action']=='stop':
             # Request from scheduler to stop
             return
         else:
             tools.info_print('got branch at location = %s'%
                               (data['location']))
             self.status_publisher.update(active=True)
             # Get data about the branch to be worked on
             branch = data['branch_root']
             branch_location = data['location']
             self.status_publisher.set_new_root_simplex(branch.data.vertices,
                                                        branch_location,
                                                        data['action'])
             # Do work on this branch (i.e. partition this simplex)
             try:
                 tools.info_print('calling algorithm')
                 self.difficulty.reset() # Reset difficult checking
                 self.alg_call(data['action'],branch,branch_location)
             except:
                 self.status_publisher.update(failed=True)
                 raise
             # Save completed branch and notify scheduler that it is
             # available
             with open(global_vars.DATA_DIR+'/branch_%s.pkl'%
                       (data['location']),'wb') as f:
                 pickle.dump(data,f)
             tools.info_print('completed task at location = %s, '
                              'notifying scheduler'%(data['location']))
             self.status_publisher.update(active=False)
Esempio n. 10
0
 def work_collector_thread(self):
     """Main loop thread which collects new and finished tasks from
     workers. This thread also evaluates the stopping criterion."""
     while True:
         self.collector_looprate.update()
         #-- Main code ---------------------------------------
         # Capture finished workers that are now idle
         any_workers_became_idle = False
         for i in self.worker_idxs:
             self.mutex.acquire()
             status = self.status_msg[i].receive()
             self.mutex.release()
             if status is not None:
                 tools.info_print(
                     ('got status update from worker (%d), '
                      'status {}' %
                      (self.get_worker_proc_num(i))).format(status))
                 self.mutex.acquire()
                 self.worker_proc_status[i] = status
                 self.mutex.release()
                 if status['status'] == 'idle':
                     self.mutex.acquire()
                     self.idle_workers.append(i)
                     if self.worker2task[i] is not None:
                         self.worker2task[i] = None  # reset
                     self.mutex.release()
                     any_workers_became_idle = True
         # Collect any new work from workers
         new_tasks_available = False
         for i in self.worker_idxs:
             self.mutex.acquire()
             task = self.task_msg[i].receive()
             self.mutex.release()
             if task is not None:
                 tools.info_print(
                     ('received new task from worker (%d), '
                      'task {}' %
                      (self.get_worker_proc_num(i))).format(task))
                 self.mutex.acquire()
                 # Inserting at the front naturally "bubbles" the easier
                 # tasks to the top, while the difficult tasks gather at the
                 # beginning of self.task_queue
                 self.task_queue.insert(0, task)
                 self.mutex.release()
                 new_tasks_available = True
         if any_workers_became_idle or new_tasks_available:
             self.mutex.acquire()
             self.__publish_idle_count()
             self.mutex.release()
         #----------------------------------------------------
         self.mutex.acquire()
         self.stop_threads = (len(self.idle_workers) == self.N_workers
                              and len(self.task_queue) == 0)
         stop = self.stop_threads
         self.mutex.release()
         if stop:
             tools.info_print('work collector is stopping')
             return
Esempio n. 11
0
 def spin(self):
     """
     Manages worker processes until the partitioning process is finished,
     then shuts the processes down and exits.
     """
     tools.info_print('creating the main loop threads')
     publisher = threading.Thread(target=self.status_publisher_thread)
     dispatcher = threading.Thread(target=self.work_dispatcher_thread)
     collector = threading.Thread(target=self.work_collector_thread)
     tools.info_print('starting the main loop threads...')
     collector.start()
     dispatcher.start()
     publisher.start()
     tools.info_print('waiting for the main loop threads to finish...')
     collector.join()
     dispatcher.join()
     publisher.join()
     tools.info_print('all main loop threads finished')