def save_eval_result(self):
     tools.listToCsv(self.result_folder+'log.csv',self.train_ave_profit_list,self.ave_Q_list,self.ave_reward_list,self.test_ave_profit_list,self.epsilon_list)
     
     #2軸使用
     fig, axis1 = plt.subplots()
     axis2 = axis1.twinx()
     axis1.set_ylabel('ave_max_Q')
     axis2.set_ylabel('epsilon')
     axis1.plot(self.ave_Q_list, label = "ave_max_Q")
     axis1.legend(loc = 'upper left')
     axis2.plot(self.epsilon_list, label = 'epsilon', color = 'g')
     axis2.legend()
     filename = self.result_folder + "log_ave_max_Q.png"
     plt.grid(which='major')
     plt.savefig(filename)
     plt.close()
     
     #2軸使用
     fig, axis1 = plt.subplots()
     axis2 = axis1.twinx()
     axis1.set_ylabel('ave_reward')
     axis2.set_ylabel('epsilon')
     axis1.plot(self.ave_reward_list, label = "ave_reward")
     reward_ema = ta.EMA(np.array(self.ave_reward_list,dtype='f8'),timeperiod=10)
     axis1.plot(reward_ema, color = 'r')
     axis1.legend(loc = 'upper left')
     axis2.plot(self.epsilon_list, label = 'epsilon', color = 'g')
     axis2.legend()
     filename = self.result_folder + "log_ave_reward.png"
     plt.grid(which='major')
     plt.savefig(filename)
     plt.close()
     
     #2軸使用
     fig, axis1 = plt.subplots()
     axis2 = axis1.twinx()
     axis1.set_ylabel('ave_train_profit')
     axis2.set_ylabel('epsilon')
     axis1.plot(self.train_ave_profit_list, label = "ave_train_profit")
     train_ema = ta.EMA(np.array(self.train_ave_profit_list,dtype='f8'),timeperiod=10)
     axis1.plot(train_ema, color = 'r')
     axis1.legend(loc = 'upper left')
     axis2.plot(self.epsilon_list, label = 'epsilon', color = 'g')
     axis2.legend()
     filename = self.result_folder + "log_ave_train_profit.png"
     plt.grid(which='major')
     plt.savefig(filename)
     plt.close()
     
     #2軸使用
     fig, axis1 = plt.subplots()
     axis2 = axis1.twinx()
     axis1.set_ylabel('ave_test_profit')
     axis2.set_ylabel('epsilon')
     axis1.plot(self.test_ave_profit_list, label = "ave_test_profit")
     test_ema = ta.EMA(np.array(self.test_ave_profit_list,dtype='f8'),timeperiod=10)
     axis1.plot(test_ema, color = 'r')
     axis1.legend(loc = 'upper left')
     axis2.plot(self.epsilon_list, label = 'epsilon', color = 'g')
     axis2.legend()
     filename = self.result_folder + "log_ave_test_profit.png"
     plt.savefig(filename)
     plt.close()
Esempio n. 2
0
        Agent.DQN.reset_optimizer()

    stock_agent = env_stockmarket.Stock_agent(Agent, args.action_split_number)

    try:
        testdata, testprice = market.get_testData(f, args.input_num)
        #testdata, testprice = market.get_trainData(f,END_TRAIN_DAY,args.input_num)
    except:
        print 'skip', f
        continue

    profit_ratio, proper, order, stocks, price, Q_list, ave_buyprice_list, reward_list = stock_agent.trading_test(
        args.input_num, testprice, testdata)
    profit_list.append(profit_ratio)

    tools.listToCsv(folder + str(f).replace(".CSV", "") + '.csv', price,
                    proper, order, stocks, ave_buyprice_list, reward_list)

    buy_order, sell_order = tools.order2buysell(order, price)

    #2軸使用

    fig, axis1 = plt.subplots()
    axis2 = axis1.twinx()
    axis1.set_ylabel('price')
    axis1.set_ylabel('buy')
    axis1.set_ylabel('sell')
    axis2.set_ylabel('property')
    axis1.plot(price, label="price")
    axis1.plot(buy_order, 'o', label='buy point')
    axis1.plot(sell_order, '^', label='sell point')
    axis1.legend(loc='upper left')
Esempio n. 3
0
def log_result():
    # Logger
    global train_loss_list, mean_error_list
    
    train_count = 0
    train_cur_loss = 0
    train_cur_accuracy = 0
    begin_at = time.time()
    val_begin_at = None
    while True:
        result = res_q.get()
        if result == 'end':
            print(file=sys.stderr)
            break
        elif result == 'train':
            print(file=sys.stderr)
            train = True
            if val_begin_at is not None:
                begin_at += time.time() - val_begin_at
                val_begin_at = None
            continue
        elif result == 'val':
            print(file=sys.stderr)
            train = False
            val_count = val_loss = val_accuracy = 0
            val_begin_at = time.time()
            continue

        loss, accuracy = result
        if train:
            train_count += 1
            duration = time.time() - begin_at
            throughput = train_count * args.batchsize / duration
            sys.stderr.write(
                '\rtrain {} updates ({} samples) time: {} ({} images/sec)'
                .format(train_count, train_count * args.batchsize,
                        datetime.timedelta(seconds=duration), throughput))

            train_cur_loss += loss
            train_cur_accuracy += accuracy
            if train_count % 10 == 0:
                mean_loss = train_cur_loss / 10
                train_loss_list.append(mean_loss)
                mean_error = 1 - train_cur_accuracy / 10
                mean_error_list.append(mean_error)
                tools.listToCsv(folder+'trainloss.csv',train_loss_list,mean_error_list)
                print(file=sys.stderr)
                print(json.dumps({'type': 'train', 'iteration': train_count,
                                  'error': mean_error, 'loss': mean_loss}))
                sys.stdout.flush()
                train_cur_loss = 0
                train_cur_accuracy = 0
        else:
            val_count += args.batchsize
            duration = time.time() - val_begin_at
            throughput = val_count / duration
            sys.stderr.write(
                '\rval   {} batches ({} samples) time: {} ({} images/sec)'
                .format(val_count / args.batchsize, val_count,
                        datetime.timedelta(seconds=duration), throughput))

            val_loss += loss
            val_accuracy += accuracy
            if val_count == 10000:
                mean_loss = val_loss * args.batchsize / 10000
                mean_error = 1 - val_accuracy * args.batchsize / 10000
                print(file=sys.stderr)
                print(json.dumps({'type': 'val', 'iteration': train_count,
                                  'error': mean_error, 'loss': mean_loss}))
                sys.stdout.flush()
Esempio n. 4
0
for f in files:
    print f
    stock_agent = env_stockmarket.Stock_agent(Agent)
    
    try:
        testdata,testprice = market.get_testData(f,args.input_num)
        #testdata, testprice = market.get_trainData(f,END_TRAIN_DAY,args.input_num)
    except:
        print 'skip',f
        continue
        
    profit_ratio, proper, order, stocks, price = stock_agent.trading_test(args.input_num,testprice,testdata)
    profit_list.append(profit_ratio)
    

    tools.listToCsv(folder+str(f).replace(".CSV", "")+'.csv', price, proper, order,stocks)
    
    buy_order, sell_order = tools.order2buysell(order,price)

    #2軸使用
    fig, axis1 = plt.subplots()
    axis2 = axis1.twinx()
    axis1.set_ylabel('price')
    axis1.set_ylabel('buy')
    axis1.set_ylabel('sell')
    axis2.set_ylabel('property')
    axis1.plot(price, label = "price")
    axis1.plot(buy_order,'o',label='buy')
    axis1.plot(sell_order,'^',label='sell')
    axis1.legend(loc = 'upper left')
    axis2.plot(proper, label = 'property', color = 'g')
Esempio n. 5
0
        inputlist = row[:-output_num-2]
        output = row[-output_num-2]
        inputlist = np.array([inputlist]).astype(np.float32)
        outputlist.append(output)
        y = model.predict(xp.asarray(inputlist))
        predictlist.append(y.data[0,0])
        rec.append((output - y.data[0,0])*(output - y.data[0,0]))
            
            
price = tools.getClose(args.code,START_TEST_DAY)
#print len(test)
#print len(outputlist), len(predictlist) ,len(price)

ema_list = ta.EMA(np.array(rec,dtype='f8'),timeperiod=60)

tools.listToCsv(folder+'visuallizer' + str(args.code)+'.csv',price[:-NEXT_DAY+1],outputlist,predictlist,rec,ema_list)
#可視化
#2軸使用
fig, axis1 = plt.subplots()
axis2 = axis1.twinx()
axis1.set_ylabel('price')
axis2.set_ylabel('move ratio')
axis1.plot(price, label = "price")
axis1.legend(loc = 'upper left')
axis2.plot(outputlist, label = 'True', color = 'g')
axis2.plot(predictlist, label = 'predict', color = 'r')
axis2.plot(ema_list,label='ema',color='y')
#axis2.plot(error, label = 'square error', color = 'm')
axis2.legend()
plt.show()
print 'finished!!'
Esempio n. 6
0
    for row in test:
        inputlist = row[:-output_num-2]
        output = row[-output_num-2]
        inputlist = np.array([inputlist]).astype(np.float32)
        y = model_3.predict(xp.asarray(inputlist))
        rec_3.append((output - y.data[0,0])*(output - y.data[0,0]))
            
price = tools.getClose(args.code,START_TEST_DAY)
#print len(test)
#print len(outputlist), len(predictlist) ,len(price)

sma_list_1 = ta.SMA(np.array(rec_1,dtype='f8'),timeperiod=60)
sma_list_2 = ta.SMA(np.array(rec_2,dtype='f8'),timeperiod=60)
sma_list_3 = ta.SMA(np.array(rec_3,dtype='f8'),timeperiod=60)

tools.listToCsv(folder+'visuallizer_multi' + str(args.code)+'.csv',price[:-NEXT_DAY+1],sma_list_1,sma_list_2,sma_list_3)
#可視化
#2軸使用
pic_name = folder + 'visuallizer_multi' + str(args.code)+'.png'
fig, axis1 = plt.subplots()
axis2 = axis1.twinx()
axis1.set_ylabel('price')
axis2.set_ylabel('move ratio')
axis1.plot(price, label = "price")
axis1.legend(loc = 'upper left')
axis2.plot(sma_list_1,label='model_1',color='y')
axis2.plot(sma_list_2,label='model_2',color='c')
axis2.plot(sma_list_3,label='model_3',color='m')
#axis2.plot(error, label = 'square error', color = 'm')
axis2.legend()
Esempio n. 7
0
def main(files):
    start_trading_day = 20000104
    end_trading_day = 20081230

    #start_trading_day = 20090105
    #end_trading_day = 20101229

    meigara_count = 0

    profit_ratio_rsi_list = []
    profit_ratio_macd_list = []
    profit_ratio_gd_list = []
    profit_ratio_stoch_list = []
    profit_ratio_rsi_list = []
    bh_profit_ratio_list = []

    for f in tqdm(files):
        #print f

        _property = 0  #総資産
        money = 1000000  #所持金

        filepath = args.data_folder + '/' + f
        #株価データの読み込み
        _time, _open, _max, _min, _close, _volume, _keisu, _shihon = make_dataset.readfile(
            filepath)
        try:
            iday = _time.index(start_trading_day)
            eday = _time.index(end_trading_day)
        except:
            #print "can't find start_test_day"
            continue  #start_trading_dayが見つからなければ次のファイルへ

        point_rsi = getStrategy_RSI(start_trading_day, end_trading_day, _time,
                                    _close)
        point_macd = getStrategy_MACD(start_trading_day, end_trading_day,
                                      _time, _close)
        point_gd = getStrategy_GD(start_trading_day, end_trading_day, _time,
                                  _close)
        point_stoch = getStrategy_STOCH(start_trading_day, end_trading_day,
                                        _time, _close, _max, _min)

        #売買開始日からスライス
        _time = _time[iday:eday]
        _close = _close[iday:eday]

        #buy&holdの利益率を計算
        bh_profit_ratio = float((_close[-1] - _close[0]) / _close[0]) * 100
        bh_profit_ratio_list.append(bh_profit_ratio)

        profit_ratio = trading(money, point_rsi, _close)[0]
        profit_ratio_rsi_list.append(profit_ratio)

        profit_ratio = trading(money, point_macd, _close)[0]
        profit_ratio_macd_list.append(profit_ratio)

        profit_ratio = trading(money, point_gd, _close)[0]
        profit_ratio_gd_list.append(profit_ratio)

        profit_ratio = trading(money, point_stoch, _close)[0]
        profit_ratio_stoch_list.append(profit_ratio)

        meigara_count += 1
        #print meigara_count

    print "RSI profit average is = ", sum(profit_ratio_rsi_list) / len(
        profit_ratio_rsi_list)
    print "MACD profit average is = ", sum(profit_ratio_macd_list) / len(
        profit_ratio_macd_list)
    print "GD profit average is = ", sum(profit_ratio_gd_list) / len(
        profit_ratio_gd_list)
    print "STOCH profit average is = ", sum(profit_ratio_stoch_list) / len(
        profit_ratio_stoch_list)
    print 'buy&hold profit = ', sum(bh_profit_ratio_list) / len(
        bh_profit_ratio_list)
    print "all meigara is %d" % meigara_count

    tools.listToCsv('profit_ratio_list.csv', bh_profit_ratio_list,
                    profit_ratio_gd_list, profit_ratio_macd_list,
                    profit_ratio_rsi_list, profit_ratio_stoch_list)