def main(argv): parser = argparse.ArgumentParser(description='Create or update cfn resource schema') parser.add_argument('--update', action='store_true') parser.add_argument('--type', metavar='TYPE', help='Restrict parsing resource type properties only to' ' type TYPE. Example: --type AWS::ApiGateway::RestApi') parser.add_argument('dest', nargs='?', help='Write resulting schema into FILE' ' instead of just printing it') args = parser.parse_args(argv[1:]) sess = CacheControl(requests.Session(), cache=FileCache('.web_cache')) requests.get = sess.get stage1 = 'resource-stage1.json' if args.update: if not args.dest: print >> sys.stderr, ('Error: if --update is given, `dest` must be' ' specified too') return 2 stage1_schema = tools.load(stage1) resource_schema = tools.load(args.dest) resource_schema['definitions']['resource_template'] = \ stage1_schema['definitions']['resource_template'] else: resource_schema = tools.load(stage1) resource_type_names = tools.get_all_resource_type_names() tools.update_all_resource_patterns_by_name( resource_schema, resource_type_names ) if args.type: resource_type_names = [args.type] for resource_type_name in resource_type_names: print >> sys.stderr, resource_type_name resource_properties.set_resource_properties(resource_schema, resource_type_name) del resource_schema['definitions']['resource_template'] all_properties = resource_properties.all_res_properties() resource_schema['definitions']['property_types'] = all_properties for rpt_name, rpt_schema in all_properties.items(): print >> sys.stderr, rpt_name resource_properties.set_resource_property_type_properties( resource_schema, rpt_name ) tweak_resource_schema.apply_all_tweaks(resource_schema) if args.dest: tools.write(resource_schema, args.dest) else: print tools.print_(resource_schema) return 0
def main(input_dir=settings.data_dir_20ng, label_ratio=0.1, time=0, output_dir=None): logger = logging.getLogger(__name__) if output_dir is None: output_dir = input_dir tools.make_sure_path_exists(output_dir) deltas = tools.load(os.path.join(input_dir, settings.deltas_file)) classes = tools.load(os.path.join(input_dir, settings.classes_file)) nos, hier_tree = generate_hier_info(deltas, classes, input_dir) sub_dir = os.path.join(input_dir, str(label_ratio), str(time)) output_dir = os.path.join(output_dir, str(label_ratio), str(time)) tools.make_sure_path_exists(output_dir) logger.info(logconfig.key_log('Input dir', sub_dir)) logger.info(logconfig.key_log('Output dir', output_dir)) cat_hier_file = os.path.join(output_dir, settings.cat_hier_file) if not os.path.exists(cat_hier_file): shutil.copyfile(os.path.join(input_dir, settings.cat_hier_file), os.path.join(output_dir, settings.cat_hier_file)) if os.path.exists(os.path.join(output_dir, settings.labeled_svmlight_file)) and \ os.path.exists(os.path.join(output_dir, settings.dataless_svmlight_file)) and \ os.path.exists(os.path.join(output_dir, settings.test_svmlight_file)): return data_managers = load_data_managers(sub_dir) generate_svmlight_format(data_managers, nos[-1], output_dir)
def main(input_dir=settings.data_dir_20ng, label_ratio=0.1, time=0, sparse_format=False): logger = logging.getLogger(__name__) logger.info(logconfig.key_log(logconfig.DATA_NAME, input_dir)) depth_files = [] for file_name in os.listdir(input_dir): if file_name.startswith('depth'): depth_files.append(file_name) depth_files.sort() data = tools.load(os.path.join(input_dir, depth_files[-1])) classes = tools.load(os.path.join(input_dir, settings.classes_file)) train_test_idx = tools.load( os.path.join(input_dir, settings.train_test_idx_file)) train_idx = train_test_idx['train_idx'] output_dir = os.path.join(input_dir, str(label_ratio), str(time)) logger.info( logconfig.key_log(logconfig.FUNCTION_NAME, 'split_label_unlabel')) label_idx, unlabel_idx = split_label_unlabel(data, train_idx, classes[-1], label_ratio, output_dir, seed=time) logger.info(logconfig.key_log(logconfig.FUNCTION_NAME, 'process_dataset')) [labeled_data_manager, unlabeled_data_manager, test_data_manager], vocab_info = \ process_dataset(input_dir, output_dir, sparse_format=sparse_format) logger.info( logconfig.key_log('VocabularySize', str(len(vocab_info['stoi']))))
def run(): ''' The launcher of the app ''' tools.load() if not settings.ENCRYPTION_KEY: SetEncryptionKey() if settings.ENCRYPTION_KEY: app = PasswordWallet() app.mainloop()
def load_data_managers(input_dir, filter_words=True): from build_data_managers import DataManager labeled_data = tools.load(os.path.join(input_dir, settings.labeled_data_manager_file)) unlabeled_data = tools.load(os.path.join(input_dir, settings.unlabeled_data_manager_file)) test_data = tools.load(os.path.join(input_dir, settings.test_data_manager_file)) if filter_words: non_zero_indices = np.nonzero(labeled_data.xit) non_zero_columns = sorted(set(non_zero_indices[1])) labeled_data.xit = labeled_data.xit[:,non_zero_columns] unlabeled_data.xit = unlabeled_data.xit[:,non_zero_columns] test_data.xit = test_data.xit[:,non_zero_columns] return [labeled_data, unlabeled_data, test_data]
def render(self): def handle(tag,*args,**keywords): if hasattr(self, tag): attr = getattr(self, tag) if callable(attr): repl = attr(self, *args, **keywords) else: repl = attr return fill('<dz:','>', repl, handle) if tag in helpers.__dict__ and callable(helpers.__dict__[tag]): """call functions in a module or module-like object""" helper = helpers.__dict__[tag] return fill('<dz:','>', helper(*args, **keywords), handle) def set_setting(thing, name): if thing=='template': self.template = name elif thing=='app_title': self.app_title = name return '<!-- %s set to "%s" -->' % (thing, name) def render_snippet(system_snippet, page_snippet): return '\n'.join(system_snippet.union(set([page_snippet]))) DEFAULT_TEMPLATE = os.path.join(system.root,'themes','default','default.html') self.content = fill('<dz:set_','>',self.content,set_setting) self.js = render_snippet(system.js, self.js) self.css = render_snippet(system.css, self.css) self.head = render_snippet(system.head, self.head) self.tail = render_snippet(system.tail, self.tail) template_pathname = system.theme_path if template_pathname: template_filename = os.path.join(template_pathname, self.template+'.html') if not os.path.exists(template_filename): if not self.template in ['index','content']: log.logger.warning('template missing (%s)' % (template_filename)) template_filename = os.path.join(template_pathname, 'default.html') self.tpl = template_pathname and tools.load(template_filename) or tools.load(DEFAULT_TEMPLATE) content = fill('<dz:','>',self.tpl,handle) if self.callback: content = fill('{{','}}',content,self.callback) return HTMLResponse(content)
def gen_mcpar(self,fname): """ this routine generates MC pars. to visualize the impact with respect to original cov matrix """ H0=load('data/old.hess') H=load('data/'+fname+'.hess') ndim=H0.shape[0] I=[i for i in range(ndim) if np.isnan(H[0][i])==False] nrdim=len(I) RH0=np.copy(H0[I,:][:,I]) RH=np.copy(H[I,:][:,I]) P0=self.P0[I] SAMPLE0 = np.random.multivariate_normal(P0,LA.inv(RH0),10000).T SAMPLE = np.random.multivariate_normal(P0,LA.inv(RH0+RH),10000).T names=[self.order[i] for i in I] ncols,nrows=3,4 py.figure(figsize=(ncols*5,nrows*3)) for i in range(nrdim): print i ax=py.subplot(nrows,ncols,i+1) Range=None bins=100 ax.hist(SAMPLE0[i],histtype='stepfilled',range=Range,color='Yellow',bins=bins) ax.hist(SAMPLE[i],histtype='stepfilled',range=Range,color='b',bins=bins) pmap={} pmap['BLNY']=r'$BLNY$' pmap['Nu_c']=r'$N_{u(c)}$' pmap['Nd_c']=r'$N_{d(c)}$' pmap['au_c']=r'$a_{u(c)}$' pmap['ad_c']=r'$a_{d(c)}$' pmap['bu_c']=r'$b_{u(c)}$' pmap['bd_c']=r'$b_{d(c)}$' pmap['Nu_T']=r'$N_{u(T)}$' pmap['Nd_T']=r'$N_{d(T)}$' pmap['au_T']=r'$a_{u(T)}$' pmap['ad_T']=r'$a_{d(T)}$' pmap['bu_T']=r'$b_{u(T)}$' pmap['bd_T']=r'$b_{d(T)}$' ax.text(0.1,0.8,pmap[names[i]],transform=ax.transAxes,size=20) #ax.legend(frameon=0,fontsize=20,loc='best') #ax.tick_params(axis='both', which='major', labelsize=20) py.tight_layout() py.savefig('gallery/%s.pdf'%fname)
def initialize(options_path: str) -> True: """Initialize all global variables for usage in different modules. Uses Munch() to give java-style access to dicts. Initializes empty files if none are found. Vars: options_path: str String path that points to options json file. Returns: True """ global OPT global USR global GLOC global GLD global COMMANDS global ACHIEVES global IDLE # Load options OPT = tools.load(options_path) # Initialize guild and user files if non existent if Path(OPT.users_path).exists() is False: print("Making a new users file. I was probably just installed.") tools.initialize_empty(OPT.users_path) if Path(OPT.guilds_path).exists() is False: print("Making a new guilds file. I was probably just installed.") tools.initialize_empty(OPT.guilds_path) # Load locale, guild and user files GLOC = tools.load(OPT.locale_path) USR = tools.load(OPT.users_path, default=0) for key, user in USR.items(): for inner_key, value in user.items(): if inner_key == "name": continue if isinstance(value, str): USR[key][inner_key] = mpf(value) GLD = tools.load(OPT.guilds_path, default=0) IDLE = tools.load(OPT.idle_path) print("Options, locale and user files loaded. I remembered {0} users.". format(len(USR))) COMMANDS = [] ACHIEVES = [] return True
def _get_hess_grid(self,fname): params=self.order # retrieve data=load('data/%s.dchid2dxdx'%fname) H={} for p in params: H[p]=data[p]['h'][0] # list or parameters npar=len(params) L=[] L.append(' %s'%self._get_target_par(None,None,All=True)) for i in range(npar): for j in range(i,npar): hi=H[K[i]] hj=H[K[j]] L.append('='*100) L.append('h(%s)=%0.2e h(%s)=%0.2e'%(K[i],hi,K[j],hj)) L.append(' %s'%self._get_target_par(K[i],K[j])) L.append('+%s +%s %s'%(K[i],K[j],self._gen_hess_pars(hi,hj,K[i],K[j]))) L.append('+%s -%s %s'%(K[i],K[j],self._gen_hess_pars(hi,-hj,K[i],K[j]))) L.append('-%s +%s %s'%(K[i],K[j],self._gen_hess_pars(-hi,hj,K[i],K[j]))) L.append('-%s -%s %s'%(K[i],K[j],self._gen_hess_pars(-hi,-hj,K[i],K[j]))) L=[l+'\n' for l in L] checkdir('data') F=open('data/%s.hesspar'%fname,'w') F.writelines(L) F.close()
def get_vocab_info(doc, labels, train_idx, output_path, sparse_format=False): if os.path.exists(os.path.join(output_path, settings.vocab_file)): vocab_info = tools.load(os.path.join(output_path, settings.vocab_file)) if len(vocab_info['vocab_dict']) <= settings.max_vocab_size: return vocab_info tf = Counter() data_doc = [doc[i] for i in train_idx] leaf_label = labels[-1][train_idx] for i, x in enumerate(data_doc): for word_tuple in x: word, frequency = word_tuple if sparse_format or (word not in stop_words and not word.isnumeric()): tf[word] += frequency vocab_dict = dict() new_tf = Counter() for i, v in enumerate(tf.most_common(settings.max_vocab_size)): vocab_dict[v[0]] = i new_tf[v[0]] = tf[v[0]] tf = new_tf tf["<DF>"] = len(data_doc) # to store the number of documents vocab_info = {"vocab_dict": vocab_dict, "tf": tf} tools.save(os.path.join(output_path, settings.vocab_file), vocab_info) return vocab_info
def main(): points, p2, rect, Trv2c, image_shape, annos = load() #params point_cloud_range = [0, -40, -3, 70.4, 40, 3] voxel_size = [0.16, 0.16, 2] max_num_points = 35 max_voxels = 12000 #process point_cloud_range = np.array(point_cloud_range, dtype=np.float32) voxel_size = np.array(voxel_size, dtype=np.float32) grid_size = (point_cloud_range[3:] - point_cloud_range[:3]) / voxel_size # grid_size = np.round(grid_size).astype(np.int32) grid_size = np.round(grid_size, 0, grid_size).astype(np.int32) # print(grid_size) #compute for _ in range(10): a = time.time() voxels, _, _ = points_to_voxel(points, voxel_size, point_cloud_range, max_num_points, False, max_voxels) b = time.time() - a print('frame speed: {} ms/id'.format(b * 1000)) return voxels.reshape(-1, 4), points
def gen_mc_F2c(): rnd = load('data/rand.po') t = load('data/predictions.po') #--gen MCF2c nsets = 97 mcF2c = [] for k in range(len(rnd)): F2c = np.copy(t[0]) cnt = 0 for iset in range(1, nsets, 2): F2c += rnd[k][cnt] * (t[iset] - t[iset + 1]) / 2 cnt += 1 mcF2c.append(F2c) mcF2c = np.array(mcF2c) save(mcF2c, 'data/mcF2c.po')
def main(): parser = argparse.ArgumentParser(description='Process some networks') parser.add_argument('--epochs', '-e', type=int, default=100, help='nb epochs') parser.add_argument('--dir_input', default='data/out') parser.add_argument('--file_input', default='data/out/coraux_geov2.csv', help='input file') parser.add_argument('--save_input_csv', action='store_true') parser.add_argument('--do_standardization', '-s,', action='store_true') parser.add_argument('--do_balance_smote', '-b,', action='store_true') parser.add_argument('--remove_duplicate', '-d,', action='store_true') parser.add_argument('--run_multiple_config', '-r,', action='store_true') parser.add_argument('--min_sample_size', '-n', type=int, default=2000) parser.add_argument( '--filter_taxon_rank', default=None, type=str, choices=["species", "genus", "order", "family", "class"]) parser.add_argument('--save_model', action='store_true') args = parser.parse_args() if (args.file_input): data = tools.simpleLoad(args.file_input) process(data, args) else: data = tools.load(args.dir_input) for key in data: process(data[key], args)
def load(self, projfile=None): "Load existing project from pickled file" f = projfile or self.projFilePath with FileLock(f) as lock: d = T.load(f) d['log'] = logging.getLogger("Project %s" % d['projName']) self.__dict__.update(d)
def main(input_dir='./datasets/rcv1org', output_dir=settings.data_dir_20ng, split_randomly=True): logger = logging.getLogger(__name__) logger.info(logconfig.key_log(logconfig.DATA_NAME, input_dir)) paths = [] for file_name in os.listdir(input_dir): if file_name.endswith('filtered'): paths.append(os.path.join(input_dir, file_name)) paths.sort() logger.info(logconfig.key_log(logconfig.FUNCTION_NAME, 'build_class_tree')) deltas, classes = build_class_tree(paths, output_dir) logger.info(logconfig.key_log(logconfig.FUNCTION_NAME, 'split')) if split_randomly: data = tools.load( os.path.join(output_dir, 'depth%d.txt' % (len(paths)))) train_idx, test_idx = split_train_test(data, classes[-1], settings.train_ratio, output_dir) else: copyfile(os.path.join(input_dir, 'train_test_idx.npz'), os.path.join(output_dir, 'train_test_idx.npz')) logger.info( logconfig.key_log(logconfig.FUNCTION_NAME, 'generate_hier_info')) generate_hier_info(deltas, classes, output_dir)
def test_TrajCluster(self): """TrajCluster test""" from Biskit.EnsembleTraj import traj2ensemble traj = T.load(T.testRoot() + '/lig_pcr_00/traj.dat') traj = traj2ensemble(traj) aMask = traj.ref.mask(lambda a: a['name'] in ['CA', 'CB', 'CG']) traj = traj.thin(1) traj.fit(aMask, verbose=self.local) self.tc = TrajCluster(traj, verbose=self.local) ## check how many clusters that are needed with the given criteria n_clusters = self.tc.calcClusterNumber(min_clst=3, max_clst=15, rmsLimit=0.7, aMask=aMask) ## cluster self.tc.cluster(n_clusters, aMask=aMask) if self.local: member_frames = self.tc.memberFrames() print 'There are %i clusters where the members are:' % n_clusters for i in range(n_clusters): print 'Cluster %i (%i members): %s' % ( i + 1, len(member_frames[i]), member_frames[i])
def test_TrajCluster(self): """TrajCluster test""" from Biskit.EnsembleTraj import traj2ensemble traj = T.load( T.testRoot()+'/lig_pcr_00/traj.dat') traj = traj2ensemble( traj ) aMask = traj.ref.mask( lambda a: a['name'] in ['CA','CB','CG'] ) traj = traj.thin( 1 ) traj.fit( aMask, verbose=self.local ) self.tc = TrajCluster( traj, verbose=self.local ) ## check how many clusters that are needed with the given criteria n_clusters = self.tc.calcClusterNumber( min_clst=3, max_clst=15, rmsLimit=0.7, aMask=aMask ) ## cluster self.tc.cluster( n_clusters, aMask=aMask ) if self.local: member_frames = self.tc.memberFrames() print 'There are %i clusters where the members are:'%n_clusters for i in range(n_clusters): print 'Cluster %i (%i members): %s'%( i+1, len(member_frames[i]), member_frames[i] )
def get_hier_info(input_dir): classes = tools.load(os.path.join(input_dir, settings.classes_file)) hierarchy_file = os.path.join(input_dir, settings.cat_hier_file) max_depth = len(classes) hier_tree = dict() class2no = dict() class_set = set() hier_tree[0] = 0 class_set.add("Root") class2no["Root"] = 0 class_cnt = 1 for depth in range(max_depth): for c in classes[depth]: if c not in class_set: hier_tree[class_cnt] = 0 class_set.add(c) class2no[c] = class_cnt class_cnt += 1 with open(hierarchy_file, "r") as f: line = f.readline() while line: line = line.split() hier_tree[int(line[1])] = int(line[0]) line = f.readline() nos = [] for depth in range(max_depth): nos.append([]) for i in range(len(classes[depth])): nos[depth].append(class2no[classes[depth][i]]) return nos, hier_tree
def gen_mc_glue(Q2=2.0): rnd = load('data/rand.po') t = load('data/hess_glue_%.2f.po' % Q2) #--gen MCF2c nsets = 97 mcglue = [] for k in range(len(rnd)): g = np.copy(t[0]) cnt = 0 for iset in range(1, nsets, 2): g += rnd[k][cnt] * (t[iset] - t[iset + 1]) / 2 cnt += 1 mcglue.append(g) mcglue = np.array(mcglue) save(mcglue, 'data/mcglue_%.2f.po' % Q2)
def get_vocab_info(doc, train_idx, min_freq, max_vocab_size, n_gram, dir_path): if os.path.exists(os.path.join(dir_path, settings.vocab_file)): vocab_info = tools.load(os.path.join(dir_path, settings.vocab_file)) if vocab_info['min_freq'] == min_freq and vocab_info['max_vocab_size'] == max_vocab_size \ and vocab_info['df'] == len(train_idx) and vocab_info['n_gram'] == n_gram: return vocab_info tf = Counter() data_doc = [doc[i] for i in train_idx] for i, doc in enumerate(data_doc): for tf_tuple in doc: term, frequency = tf_tuple tf[term] += frequency tf_tuples = sorted(tf.items(), key=lambda x: (-x[1], x[0])) # sort by frequency, then alphabetically stoi = dict() itos = dict() valid_term = 0 for term, freq in tf_tuples: if freq >= min_freq and valid_term < max_vocab_size: stoi[term] = valid_term itos[valid_term] = term valid_term += 1 else: tf.pop(term) vocab_info = { "min_freq": min_freq, "max_vocab_size": max_vocab_size, 'n_gram': n_gram, "stoi": stoi, "itos": itos, "tf": tf, 'df': len(train_idx) } tools.save(os.path.join(dir_path, settings.vocab_file), vocab_info) return vocab_info
def load_storage(self, fname): # create storage if not created if not os.path.exists(fname): #print fname+' is been created !' self.storage = {} else: self.storage = load(fname)
async def loadall(): global authinfo global mods global localdict global localchannel global systemchannel global commands authinfo = tools.load('authinfo.json') mods = tools.load('mods.json') localdict = tools.load('localdict.json') commands = tools.load('commands.json') localchannel = client.get_channel(localdict['localchannel']) systemchannel = client.get_channel(localdict['systemchannel']) await say(systemchannel, 'reloaded configs')
def gen_hess_error(): t = load('data/predictions.po') nsets = 97 err2 = np.zeros(t[0].size) for iset in range(1, nsets, 2): err2 += (t[iset] - t[iset + 1])**2 / 4.0 t['hess'] = err2**0.5 save(t, 'data/hess.po')
def main(argv): sess = CacheControl(requests.Session(), cache=FileCache('.web_cache')) requests.get = sess.get schema = tools.load('schema.json') schema['definitions']['Parameter']['properties'] = parse_parameters() tools.write(schema, 'schema.json')
def load(self, sysfile=None): "Load existing project from pickled file" f = sysfile or self.sysFilePath if not osp.exists(f): raise BadFile, "File %s not found." % f with FileLock(f) as lock: d = T.load(f) # d['log'] = logging.getLogger("System (%s)"%d['name']) self.__dict__.update(d)
def pinger_ping(request, pinger_class): resp, status = '', 200 try: pinger = load(pinger_class) resp = pinger().ping() except WrongPinger: status = 406 return HttpResponse(resp, status=status)
def gen_hess_par(self,fname): H0=load('data/old.hess') H=load('data/'+fname+'.hess') ndim=H0.shape[0] I=[i for i in range(ndim) if np.isnan(H[0][i])==False] nrdim=len(I) RH0=np.copy(H0[I,:][:,I]) RH=np.copy(H[I,:][:,I]) HTOT=RH0+RH W,V=LA.eig(HTOT) V=np.transpose(V) for i in range(W.size): if W[i]<0: continue V[i]/=W[i]**0.5 L=[] h='%5s'%'' for name in self.order: h+='%15s'%name L.append(h) print h P0=np.copy(self.P0) for i in range(W.size): if W[i]<0: continue PP=np.copy(P0) PP[I]+=V[i] PM=np.copy(P0) PM[I]-=V[i] lp='+%5d'%i for p in PP: lp+='%15.5e'%p lm='-%5d'%i for p in PM: lm+='%15.5e'%p L.append(lp) L.append(lm) print lp print lm L=[l+'\n' for l in L] F=open('data/'+fname+'.eig','w') F.writelines(L) F.close()
def load(self, replfile=None): "Load existing project from pickled file" f = replfile or self.replFilePath if not osp.exists(f): raise BadFile, "File %s not found." % f with FileLock(f) as lock: d = T.load(f) d['log'] = logging.getLogger("Replica (%s)" % d['name']) d['grids'] = None if not d.has_key('prod_steps'): d['prod_steps'] = d['nvt_prod_steps'] self.__dict__.update(d)
def loadTraj(self, ftraj): """ Load trajectories from disc. @param ftraj: path to trajectory @type ftraj: str @return: ensemble trajectory object @rtype: EnsembleTraj """ t = T.load(T.absfile(ftraj)) return traj2ensemble(t)
def loadTraj( self, ftraj ): """ Load trajectories from disc. @param ftraj: path to trajectory @type ftraj: str @return: ensemble trajectory object @rtype: EnsembleTraj """ t = T.load( T.absfile( ftraj ) ) return traj2ensemble( t )
def gen_weights(): rnd = load('data/rand.po') t = load('data/predictions.po') mcF2c = load('data/mcF2c.po') #--get absolute simulated errors t['alpha'] = t[0] * t['relerr'] #--gen chi2 chi2 = [] for F2c in mcF2c: exp = np.copy(t[0]) res = (exp - F2c) / t['alpha'] chi2.append(np.sum(res**2)) chi2 = np.array(chi2) dchi2 = chi2 - t[0].size #--gen weights weights = np.exp(-0.5 * dchi2) norm = np.sum(weights) weights /= norm save(weights, 'data/weights.po')
def main(argv): sess = CacheControl(requests.Session(), cache=FileCache('.web_cache')) requests.get = sess.get resource_schema = tools.load(sys.argv[1]) apply_all_tweaks(resource_schema) if len(argv) == 3 and argv[2].endswith('json'): tools.write(resource_schema, argv[1]) else: print tools.print_(resource_schema) return 0
def __init__(self, parent, controller): Frame.__init__(self, parent) # Create the top menu menu = Menu(self) controller.configure(menu=menu) # Define the file section of the top menu file_menu = Menu(menu, tearoff=False) menu.add_cascade(label='File', menu=file_menu) # Add the options to the file menu file_menu.add_command(label='Move password', command=lambda: tools.mv_file()) file_menu.add_command(label='Make backup', command=lambda: tools.make_bk()) file_menu.add_command(label='Burn file') file_menu.add_command(label='Reload', command=lambda: tools.load()) file_menu.add_separator() file_menu.add_command(label='Preferences') file_menu.add_separator() file_menu.add_command(label='Exit', command=lambda: secure_exit()) # Define the tools section of the top menu file_menu = Menu(menu, tearoff=False) menu.add_cascade(label='Tools', menu=file_menu) # Add the options to the tools menu file_menu.add_command(label='Generate password') file_menu.add_command(label='Test password', command=lambda: TestPassword()) file_menu.add_command(label='Add password', command=lambda: AddPassword()) file_menu.add_command( label='Edit password', command=lambda: controller.show_frame(EditPassword)) file_menu.add_separator() file_menu.add_command(label='Find') file_menu.add_separator() file_menu.add_command(label='Decrypt/Encrypt') # Define the info section of the top menu file_menu = Menu(menu, tearoff=False) menu.add_cascade(label='Info', menu=file_menu) # Add the options to the tools menu file_menu.add_command(label='Version') file_menu.add_command(label='Developer') file_menu.add_command(label='Security')
def reload_users() -> True: """Forces dictionary reload for users from file. Returns: True """ global USR USR = tools.load(OPT.users_path, default=0) for key, user in USR.items(): for inner_key, value in user.items(): if inner_key == "name": continue if isinstance(value, str): USR[key][inner_key] = mpf(value) return True
def _plot_hess_h(self,fname): print 'plotting ',fname data=load('data/%s.dchid2dxdx'%fname) ncols,nrows=4,4 py.figure(figsize=(ncols*5,nrows*3)) # list or parameters K=['BLNY','Nu_c','Nd_c','au_c','ad_c','bu_c','bd_c','Nu_T','Nd_T','au_T','ad_T','bu_T','bd_T'] cnt=1 for k in K: ax=py.subplot(nrows,ncols,cnt) h=data[k]['h'] dchi2dxdx=data[k]['dchi2dxdx'] ax.plot(h,dchi2dxdx,'b-o') ax.set_xlabel(r'$h$') ax.set_ylabel(r'$\partial \chi^2/\partial^2 p$') ax.semilogx() ax.set_title(r'${\rm %s}$'%k.replace('_',' ')) cnt+=1 I=np.argsort(h) #if fname=='clas_p_pim': if k=='BLNY':i=I[-1] if k=='Nu_c':i=I[-1] if k=='Nd_c':i=I[-1] if k=='au_c':i=I[-1] if k=='ad_c':i=I[-1] if k=='bu_c':i=I[-1] if k=='bd_c':i=I[-1] if k=='Nu_T':i=I[-1] if k=='Nd_T':i=I[-1] if k=='au_T':i=I[-5] if k=='ad_T':i=I[-4] if k=='bu_T':i=I[-5] if k=='bd_T':i=I[-5] ax.axvline(h[i],color='r',ls='--') py.tight_layout() checkdir('gallery') py.savefig('gallery/hess-%s.pdf'%fname)
def test_Pymoler(self): """Pymoler test""" self.traj = T.load( T.testRoot() + '/lig_pcr_00/traj.dat' ) self.pm = Pymoler( full=0, verbose=self.local ) mname = self.pm.addMovie( [ self.traj[i] for i in range(0,100,20) ] ) sel = self.pm.makeSel({'residue':29}) ## self.pm.add('show stick, %s' % sel) self.pm.add('show surface, %s' % sel) self.pm.add('mplay') if not self.local: self.pm.add('quit') self.pm.run() ## old style call "pm.show()" also works self.assert_( self.pm.pid is not None )
def benchmarks_impl(i, OpType, nsamples, init_cuda, data, progress): # Initialize CUDA context device, ctx, stream = init_cuda() # Process-specific seed np.random.seed(int(time()) + i) # Retrieve saved data arch = 'sm_' + '_'.join(map(str, device.compute_capability)) path = mkdir('save/{}/{}/'.format(OpType.id, arch)) + 'data{}.npz'.format(i) X, Y = load(path, [('X', OpType.Nparams), ( 'Y', 1)]) # Do not update/realloc X, Y at each iteration step = 200 bufX, bufY = np.empty((step, X.shape[1])), np.empty((step, Y.shape[1])) #Generate data nvalid = X.shape[0] progress[i] = min(nsamples,nvalid) while nvalid < nsamples: P = generate_valid(OpType, device) for params in P: #print(params) sys.stdout.flush() try: y = evaluate(OpType, ctx, stream, params) except: print('Exception for', params) pass bufX[nvalid % step, :] = params bufY[nvalid % step, :] = y # Save nvalid += 1 if nvalid % step == 0: X = np.vstack((X, bufX)) Y = np.vstack((Y, bufY)) np.savez(path, X=X, Y=Y) # Update progress progress[i] = min(nsamples,nvalid) if nvalid > nsamples: break data[i] = (X, Y)
def test_Trajectory(self): """Trajectory test""" ## f = T.testRoot() + '/lig_pc2_00/pdb/' ## allfiles = os.listdir( f ) ## pdbs = [] ## for fn in allfiles: ## try: ## if (fn[-7:].upper() == '.PDB.GZ'): ## pdbs += [f + fn] ## except: ## pass ## ref = pdbs[0] ## traj = Trajectory( pdbs[:3], ref, rmwat=0 ) ## Loading self.traj = T.load(T.testRoot() + '/lig_pcr_00/traj.dat') ## sort frames after frameNames self.traj.sortFrames() ## sort atoms self.traj.sortAtoms() ## remove waters self.traj = self.traj.compressAtoms( N.logical_not( self.traj.ref.maskH2O()) ) ## get fluctuation on a residue level r1 = self.traj.getFluct_local( verbose=self.local ) ## fit backbone of frames to reference structure self.traj.fit( ref=self.traj.ref, mask=self.traj.ref.maskBB(), verbose=self.local ) self.assertAlmostEqual( N.sum( self.traj.profile('rms') ), 58.101235746353879, 2 )
def render(self): def handle(tag, *args, **keywords): # first try filling tag with page attributes if hasattr(self, tag): attr = getattr(self, tag) if callable(attr): repl = attr(self, *args, **keywords) else: repl = attr return fill('<dz:','>', repl, handle) # if that doesn't work look for an app helper elif tag in system.app.helpers: helper = system.app.helpers[tag] # if that doesn't work look for a system helper elif tag in system.helpers: helper = system.helpers[tag] # if that doesn't work look in the helpers module elif tag in helpers.__dict__ and callable(helpers.__dict__[tag]): """call functions in a module or module-like object""" helper = helpers.__dict__[tag] else: helper = None if helper: if callable(helper): repl = helper(*args, **keywords) else: repl = helper return fill('<dz:','>', repl, handle) def set_setting(thing, name): if thing=='template': self.template = name elif thing=='app_title': self.app_title = name return '<!-- %s set to "%s" -->' % (thing, name) def render_snippet(system_snippet, page_snippet): return '\n'.join(system_snippet | OrderedSet([page_snippet])) def render_script_tags(system_scripts, page_scripts): scripts = system_scripts | page_scripts h = scripts and '\n <!-- Page Specific Scripts -->\n' or '' c = '\n'.join(' <script type="text/javascript" src="{}"></script>'.format(t) for t in scripts) t = scripts and '\n\n' or '' return h + c + t def render_style_sheets(system_style_sheets, page_style_sheets): sheets = system_style_sheets | page_style_sheets h = sheets and '\n <!-- Page Specific Styles -->\n' or '' c = '\n'.join(' <link rel="stylesheet" type="text/css" href="{}">'.format(t) for t in sheets) t = sheets and '\n\n' or '' return h + c + t DEFAULT_TEMPLATE = os.path.join(system.root,'themes','default','default.html') self.theme = self.theme or system.app.theme or user.theme or system.theme if self.theme != system.theme: system.set_theme(self.theme) self.content = fill('<dz:set_','>', self.content, set_setting) self.styles = render_style_sheets(system.styles, self.styles) self.css = render_snippet(system.css, self.css) self.libs = render_script_tags(system.libs, self.libs) self.js = render_snippet(system.js, self.js) self.head = render_snippet(system.head, self.head) self.tail = render_snippet(system.tail, self.tail) if len(route)>1: breadcrumb = link_to(system.app.title,'/'+system.app.name) else: breadcrumb = '' template_pathname = system.theme_path if template_pathname: template_filename = os.path.join(template_pathname, self.template+'.html') if not os.path.exists(template_filename): if not self.template in ['index','content']: log.logger.warning('template missing (%s)' % (template_filename)) template_filename = os.path.join(template_pathname, 'default.html') self.tpl = template_pathname and tools.load(template_filename) or tools.load(DEFAULT_TEMPLATE) page_header = self.render_header() save_content = self.content self.content = page_header + self.content save_title = self.title del self.title content = fill('<dz:','>', self.tpl, handle) self.title = save_title self.content = save_content if self.callback: content = fill('{{','}}', content, self.callback) return HTMLResponse(content)
def main(): U, C, S = load('cornu.dat') cornu_plot(C, S)
#!/usr/bin/env python import sys import val import tools schema = tools.load('schema.json') template = tools.load(sys.argv[1]) val.val(template, schema)
def plot_length(D): x, mags, phase = load('diffraction_%scm.dat' % D) combined_plot(x, mags, phase, D)
def load_storage(self, fname): if not os.path.exists(fname): self.storage = {} else: self.storage = load(fname)
if plot_fits: fig = plt.figure() ax = fig.add_subplot(111) xx = np.arange(min(x), max(x)) yy = logistic(popt, xx) ax.plot(x, y, xx, yy) plt.show() except RuntimeError: offsets[group] = [0] return zip(*sorted(offsets.iteritems())) if __name__ == '__main__': if len(sys.argv) < 2: print 'Usage:', sys.argv[0], '<trigger scan file> [start_nhit end_nhit]' sys.exit(1) if len(sys.argv) == 4: xf = lambda x: x > float(sys.argv[2]) and x < float(sys.argv[3]) else: xf = lambda x: True zf = lambda x: x < 1.0e6 data = tools.load(sys.argv[1], xfilt=xf, zfilt=zf) linear_fit_plot(*make_nhit_vs_adc(data))