Esempio n. 1
0
	def detect_anomaly( self, filename = '' ):
		sys.stdout.write( '[INFO]: start detecting file:%s\n' % (filename) )
		#load file
		all_text = load_file( self.input_path+filename )
		if all_text == False:
			sys.stderr.write( "[ERROR]: load input file failed!" )
			return 

		input_list = []
		for line in all_text:
			try:
				inbound_data = json.loads( line.strip() ) 
				events_num = self.get_event_num( inbound_data )
				input_list.append(events_num)
			except Exception:
				sys.stderr.write( '[ERROR]: load json failed! %s' %s (line) )

		#sort
		input_list.sort(lambda x,y:cmp(x[1],y[1]), reverse=True)

		#write result to file
		f_write = open( self.output_path + 'res.'+ filename, 'a' )
		for item in input_list:
			f_write.write('%s,%s\n' % (item[0], item[1]) )
		f_write.close()
		sys.stdout.write( '[INFO]: done. write result into path:%s\n' % (self.output_path))
Esempio n. 2
0
 def trigger(self):
     """ 添加触发事件 """
     self.file1.clicked.connect(lambda: tools.choose_file(self.file_path1))
     self.file2.clicked.connect(lambda: tools.choose_file(self.file_path2))
     self.start.clicked.connect(lambda: tools.load_file(self.file_path1,
                                                        self.file_path2,
                                                        self.content1,
                                                        self.content2,
                                                        self.repetition_rate))
Esempio n. 3
0
    def set_localT(self, value):
        self._localT = value
        ## do some other fancy stuff
        Box._locaT = value
        self.temperature_history.append(value) ## move to chain
        for chain in self.chain_list:
            chain.temperature_history.append(value)

        ## load new value of exp
        if value in settings.EXP_TABLES:
            settings.EXP_TABLE = settings.EXP_TABLES[value]
            logging.info('change exp_table %f ' % value)
        else:
            settings.EXP_TABLE = tools.load_file(settings.ROOT_DIR +  \
                settings.FILES_TEMPLATE['exp'] % value, {})
            settings.EXP_TABLES[value] = settings.EXP_TABLE
            logging.info('load new exp_table %f' % value)

        logging.info("Set temperature to: %f" % value)
Esempio n. 4
0
	def load_profile(self):
		all_text = load_file( self.path )
		if all_text == False:
			sys.stderr.write( "[ERROR]: load profile failed!\n" )
			return False
		#load all the contents into tempory dictionary
		profile_dict = {}
		for line in all_text:
			try:
				profile = json.loads( line.strip() )
				profile_dict[profile['type']] = {'thresholds': profile['thresholds'],
												'window':profile['window']}
			except Exception:
				sys.stderr.write( "[ERROR] load json failed! %s\n" % (line))
		if len(profile_dict) > 0:
			sys.stdout.write( '[INFO]: load the device profile successfully!\n')
			return profile_dict
		else:
			sys.stderr.write( '[ERROR]: load device profile failed!\n')
			return False
Esempio n. 5
0
import tools
import GSR
import numpy as np

# import matplotlib.pyplot as plt
import windowing as win

filename = "./data/GSR_F01_F.txt"

T1 = 0.75
T2 = 2
MX = 1
DELTA = 0.02
nFS = 16

gsr_data = tools.load_file(filename, header=8, sep=",")  # 8 ","
#TODO GAUSSIANA

gsr_data = tools.downsampling(gsr_data, nFS)
# plt.figure(1)
# plt.plot(gsr_data[:,0], gsr_data[:,1])
# plt.xlabel("Time (s)")
# plt.ylabel("GSR (uS)")
# plt.title("Raw GSR")
# t_gsr, gsr = GSR.remove_spikes(gsr_data[:,1], nFS)
t_gsr = gsr_data[:, 0]
gsr = gsr_data[:, 1]
print gsr.shape
# print t_gsr.shape, gsr.shape, gsr_data.shape
t_driver, driver, phasic_d, tonic_d = GSR.estimate_drivers(
    t_gsr, gsr, T1, T2, MX, DELTA)
Esempio n. 6
0
	def test_load_file_normal(self):
		self.assertEqual( tools.load_file('test_load_file.txt'), ['abcd\n','ef\n'], '#2 test load_file failed' )
Esempio n. 7
0
	def test_load_file_empty(self):
		self.assertEqual( tools.load_file('abc'), False, '#1 test load_file failed' )
Esempio n. 8
0
def load_chat_texts():
    patterns = tools.load_file('dialog-ger.md')
    patterns.extend(tools.load_file('german-aixml.md'))
    patterns.extend(tools.load_file('german-aixml-2.md'))
    return patterns
    "TIME", "ACCX", "ACCY", "ACCZ", "GYRX", "GYRY", "GYRZ", "MAGX", "MAGY",
    "MAGZ", "LAB"
]
col_acc = ["ACCX", "ACCY", "ACCZ"]
col_gyr = ["GYRX", "GYRY", "GYRZ"]
col_mag = ["MAGX", "MAGY", "MAGZ"]

empaticaAccCoeff = 2 * 9.81 / 128
empaticafsamp = 32

sensAccCoeff = 8 * 9.81 / 32768
sensGyrCoeff = 2000 / 32768
sensMagCoeff = 0.007629
sensfsamp = 100

data = tools.load_file(filename, sep=',', header=1)

data = tools.downsampling(data, 50)

t = tools.selectCol(data, columns_in, "TIME")
acc = tools.selectCol(data, columns_in, col_acc)
gyr = tools.selectCol(data, columns_in, col_gyr)
mag = tools.selectCol(data, columns_in, col_mag)
lab = tools.selectCol(data, columns_in, "LAB")

acc = inertial.convert_units(acc, coeff=sensAccCoeff)
gyr = inertial.convert_units(gyr, coeff=sensGyrCoeff)
mag = inertial.convert_units(mag, coeff=sensMagCoeff)

# tools.array_labels_to_csv(np.column_stack([t, acc]), np.array(columns_in), "./output/preproc_"+filename[7:-4]+".csv")
Esempio n. 10
0
import tools
import GSR
import matplotlib.pyplot as plt
import numpy as np
import windowing as win

filename="./data/GSR.csv"

T1=0.75
T2=2
MX=1
DELTA=0.02
FS=4
nFS=4

gsr_data = tools.load_file(filename, header=1, sep=";") # 8 ","
#TODO GAUSSIANA

# gsr_data=tools.downsampling(gsr_data, FS, nFS)
plt.figure(1)
plt.plot(gsr_data[:,0], gsr_data[:,1])
plt.xlabel("Time (s)")
plt.ylabel("GSR (uS)")
plt.title("Raw GSR")
# t_gsr, gsr = GSR.remove_spikes(gsr_data[:,1], nFS)
t_gsr = gsr_data[:,0]
gsr   = gsr_data[:,1]
# print t_gsr.shape, gsr.shape, gsr_data.shape
t_driver, driver, phasic_d, tonic_d= GSR.estimate_drivers(t_gsr, gsr, T1, T2, MX, DELTA, FS=FS)
windows=win.generate_dummy_windows(len(phasic_d), 80, 10)
features = GSR.extract_features(phasic_d, t_driver, DELTA, windows)
columns_in=["TIME", "ACCX","ACCY","ACCZ", "GYRX","GYRY","GYRZ", "MAGX","MAGY","MAGZ", "LAB"]
col_acc=["ACCX", "ACCY", "ACCZ"]
col_gyr=["GYRX", "GYRY", "GYRZ"]
col_mag=["MAGX", "MAGY", "MAGZ"]


empaticaAccCoeff=2*9.81/128
empaticafsamp=32

sensAccCoeff=8*9.81/32768
sensGyrCoeff=2000/32768
sensMagCoeff=0.007629
sensfsamp=100

data = tools.load_file(filename, sep=',', header=1)

data=tools.downsampling(data, 50)

t=tools.selectCol(data, columns_in, "TIME")
acc=tools.selectCol(data, columns_in, col_acc)
gyr=tools.selectCol(data, columns_in, col_gyr)
mag=tools.selectCol(data, columns_in, col_mag)
lab=tools.selectCol(data, columns_in, "LAB")

acc= inertial.convert_units(acc, coeff=sensAccCoeff)
gyr= inertial.convert_units(gyr, coeff=sensGyrCoeff)
mag= inertial.convert_units(mag, coeff=sensMagCoeff)

# tools.array_labels_to_csv(np.column_stack([t, acc]), np.array(columns_in), "./output/preproc_"+filename[7:-4]+".csv")
Esempio n. 12
0
def data_loader(flag):
    data = load_file(flag)
    mg, lg = (4, 4) if len(data) < 4 else (3, 2)
    return data, mg, lg