def process_by_basin(config, ohcs, flxs, basins, areas): """ For each basin, process data and invoke Kalman filter """ ### Create cubes for data output using ohc as template output_template = create_output_template(config, ohcs[0]) out_cubes = create_output_cubes(config, output_template) ### Process basins nbasins = np.unique(basins.data.filled()) for ntask, nbasin in enumerate(nbasins): if config.getboolean('output', 'print_stdout'): tools.print_progress('Processing basins', len(nbasins), ntask+1, nbar=20) if nbasin != basins.data.fill_value: kout = process_basin(config, ohcs, flxs, basins, areas, nbasin) out_cubes = update_output_cubes(out_cubes, kout, basins, nbasin) return out_cubes
def load_data(): print("load_data") data = pd.read_csv("data/fer2013.csv") X_data = data['pixels'].as_matrix() D = SIZE**2 N = data.shape[0] X = np.zeros((N, D)) Y = data['emotion'].as_matrix() for i in range(0, N, 1): tools.print_progress(i, N, prefix='Progress:', suffix='Complete', bar_length=50) X[i] += np.array(X_data[i].split(), dtype=float) return X, Y
def generate_encoded_data_file(): print("generate_encoded_data_file") X, Y = load_data_set() Y = np.reshape(Y, (Y.shape[0], 1)) encoder = get_encoder(X) serialize(encoder(), "encoder") X_encoded = encode_string("", encoder) for i in range(0, X.shape[0], 1): print_progress(i, X.shape[0], prefix='Progress:', suffix='Complete', bar_length=50) line = encode_string(X[i], encoder) X_encoded = np.vstack((X_encoded, line)) X_encoded = X_encoded[1:, :] X_encoded = np.hstack((X_encoded, Y)) if not os.path.exists("preprocessed"): os.makedirs("preprocessed") np.savetxt("preprocessed/data.csv", X_encoded, delimiter=',', fmt="%d")
def process_resolution(params, reslist, nvar, nfiles, currfile): ''' Processes files for variable defined by params for all resolutions in reslist Parameters ---------- params : list Row in variables table corresponding to variable processed in the call of this function reslist : list List of resolutions the variable should be processed at nvar : int Number of variables (needed for progress bar) nfiles : int Currently estimated total number of files for all variables (needed for progress bar) currfile : int Currently already processed number of files ''' #Do seasonal resolution= if "sem" in reslist: seasonal = True reslist.remove("sem") else: seasonal = False log = logging.getLogger("cmorlight") # get cdf variable name var = params[config.get_config_value('index', 'INDEX_VAR')] varRCM = params[config.get_config_value('index', 'INDEX_RCM_NAME')] # create path to input files from basedir,model,driving_model in_dir = "%s/%s" % (tools.get_input_path(), params[config.get_config_value( 'index', 'INDEX_RCM_NAME')]) log.debug("Looking for input dir(1): %s" % (in_dir)) if os.path.isdir(in_dir) == False: log.error( "Input directory does not exist(0): %s \n \t Change base path in .ini file or create directory! " % in_dir) return nfiles, currfile cores = config.get_config_value("integer", "multi", exitprog=False) multilst = [] seaslst = [] log.info("Used dir: %s" % (in_dir)) for dirpath, dirnames, filenames in os.walk(in_dir, followlinks=True): if not nfiles: #estimate total if config.get_config_value('boolean', 'limit_range'): nfiles = nvar * ( config.get_config_value('integer', 'proc_end') - config.get_config_value('integer', 'proc_start') + 1) else: nfiles = nvar * len(filenames) if len(filenames) == 0: log.warning("No files found! Skipping this variable...") i = 0 for f in sorted(filenames): if f[-3:] != ".nc": continue if var not in settings.var_list_fixed: year = f.split("_")[-1][:4] #use other logger if cores > 1 and var not in settings.var_list_fixed: logger = logging.getLogger("cmorlight_" + year) logger.info( "\n###########################################################\n# Var in work: %s / %s\n###########################################################" % (var, varRCM)) logger.info("Start processing at: " + str(datetime.datetime.now())) else: logger = logging.getLogger("cmorlight") #if limit_range is set: skip file if it is out of range if config.get_config_value( 'boolean', 'limit_range') and var not in settings.var_list_fixed: if int(year) < config.get_config_value( 'integer', 'proc_start') or int(year) > config.get_config_value( 'integer', 'proc_end'): continue #Define first and last month of file if config.get_config_value('integer', "proc_start") == int(year): firstlast = [ config.get_config_value('integer', "first_month"), 12 ] elif config.get_config_value('integer', "proc_end") == int(year): firstlast = [ 1, config.get_config_value('integer', "last_month") ] else: firstlast = [1, 12] else: firstlast = [1, 12] logger.info( "\n###########################################################" ) if f.find("%s_" % var) == 0 or f.find( "%s.nc" % var) == 0 or f.find( "%s_" % varRCM) == 0 or f.find( "%s.nc" % varRCM) == 0 or f.find( "%s_" % varRCM[:varRCM.find('p')]) == 0: in_file = "%s/%s" % (dirpath, f) logger.log(35, "Input from: %s" % (in_file)) if os.access(in_file, os.R_OK) == False: logger.error("Could not read file '%s', no permission!" % in_file) else: if var in settings.var_list_fixed: tools.process_file_fix(params, in_file) else: if cores > 1: multilst.append([ params, in_file, var, reslist, year, firstlast ]) seaslst.append([params, year]) else: reslist = tools.process_file( params, in_file, var, reslist, year, firstlast) if seasonal: tools.proc_seasonal(params, year) else: logger.warning( "File %s does match the file name conventions for this variable. File not processed..." ) i = i + 1 #process as many files simultaneously as there are cores specified if i == cores and multilst != []: log.info("Processing years %s to %s simultaneously" % (seaslst[0][1], seaslst[-1][1])) pool = Pool(processes=cores) R = pool.map(process_file_unpack, multilst) pool.terminate() #seasonal processing: if seasonal: pool = Pool(processes=cores) pool.map(proc_seasonal_unpack, seaslst) pool.terminate() currfile += len(multilst) #start new multilst = [] seaslst = [] i = 0 #change reslist reslist = R[0] #update currfile if cores <= 1: currfile += 1 #print progress bar tools.print_progress(currfile, nfiles) #process remaining files if len(multilst) != 0: log.info("Processing years %s to %s simultaneously" % (seaslst[0][1], seaslst[-1][1])) pool = Pool(processes=len(multilst)) R = pool.map(process_file_unpack, multilst) pool.terminate() #seasonal processing: if seasonal: pool = Pool(processes=cores) pool.map(proc_seasonal_unpack, seaslst) pool.terminate() #update currfile currfile += len(multilst) tools.print_progress(currfile, nfiles) log.info("Variable '%s' finished!" % (var)) return nfiles, currfile
import numpy as np from PIL import Image from settings import * from tools import print_progress, sigmoid session = vk.AuthSession(access_token=TOKEN, ) vkapi = vk.API(session) count_of_messages = vkapi.messages.getHistory(count=1, user_id=USER_ID)[0] messages = [] print('Total count of messages: ', count_of_messages) for i in range(0, count_of_messages, 200): print_progress(i, count_of_messages) messages += vkapi.messages.getHistory(offset=i, count=200, user_id=USER_ID)[1:] time.sleep(0.4) print('') m = [0] * count_of_messages heatmap = np.zeros(count_of_messages) for i, msg in enumerate(messages[::-1]): if 'attachment' in msg.keys(): if 'sticker' in msg['attachment'].keys(): m[i] = 5 else: m[i] = len(re.findall(r'[\U0001f600-\U0001f650]', msg['body']))
def combining(config, n, nmax): """ Print progress bar for combining synthetic profiles""" if config.getboolean('options', 'print_stdout'): tools.print_progress('Combining synthetic data', nmax, n)
def extracting(config, n, nmax): """ Print progress bar for extraction of data""" if config.getboolean('options', 'print_stdout'): tools.print_progress('Extracting synthetic data', nmax, n)