def main(opts, args): tools.set_root_style(stat=1, grid=0) parsed = parse_args(args) datatype = parsed[0] tag = parsed[1] modes = parsed[2] label = parsed[3] figpath = os.path.join(attr.figpath, label, 'trkmtm') for mode in modes: modekey = tools.get_modekey(mode) sname = attr.modes[modekey]['sname'].lower() if sname == 'kpipi0': draw_momenta_kpipi0(datatype, mode, label, test=opts.test) elif sname == 'k3pi': draw_momenta_k3pi(datatype, mode, label, test=opts.test) elif sname == 'kpipi': draw_momenta_kpipi(datatype, mode, label, test=opts.test) elif sname == 'kpipipi0': draw_momenta_kpipipi0(datatype, mode, label, test=opts.test) elif sname == 'kspipi0': draw_momenta_kspipi0(datatype, mode, label, test=opts.test) elif sname == 'ks3pi': draw_momenta_ks3pi(datatype, mode, label, test=opts.test) elif sname == 'kkpi': draw_momenta_kkpi(figpath, datatype, mode, label, test=opts.test) else: raise NameError(sname)
def main(): set_root_style(stat=0, grid=0) ROOT.gStyle.SetPadLeftMargin(0.15) c = ROOT.TCanvas('c', 'c', 800, 800) f1 = ROOT.TFile('run/hist/jpsi2invi_data_merged_1.root') h1_mrecpipi = draw_mrecpipi(c, f1) h1_mpipi = draw_mpipi(c, f1) h1_pip_p = draw_pip_p(c, f1) h1_pim_p = draw_pim_p(c, f1) h1_pip_costhe = draw_pip_costhe(c, f1) h1_pim_costhe = draw_pim_costhe(c, f1) h1_cospipi = draw_cospipi(c, f1) h1_cos2pisys = draw_cos2pisys(c, f1) h1_ngam = draw_ngam(c, f1) outfile = 'run/summary/jpsi2invi_data.root' check_outfile_path(outfile) fout = ROOT.TFile(outfile, 'RECREATE') h1_mrecpipi.Write() h1_mpipi.Write() h1_pip_p.Write() h1_pim_p.Write() h1_pip_costhe.Write() h1_pim_costhe.Write() h1_cospipi.Write() h1_cos2pisys.Write() h1_ngam.Write() fout.Close()
def main(opts, args): set_root_style() figname = '_'.join(args[:-1]).replace('/', '_') figname = figname.replace(',', '_') function = getattr(compare, args[0]) return function(opts, args[1:], figname)
def main(): set_root_style(stat=0, grid=0) ROOT.gStyle.SetPadLeftMargin(0.15) processname = sys.argv[1] sample = sys.argv[2:] fs = get_files_from_sample(sample, processname) c = ROOT.TCanvas('c', 'c', 200, 10, 700, 500) if processname == "qqH": draw_before_cut_dijet_Pt(sample, c, fs, processname) draw_before_cut_TauTauM(sample, c, fs, processname) draw_before_cut_dijet_ang(sample, c, fs, processname) draw_before_cut_dijet_phi(sample, c, fs, processname) draw_before_cut_dijet_e(sample, c, fs, processname) draw_before_cut_dijet_m(sample, c, fs, processname) draw_before_cut_dijet_rec_m(sample, c, fs, processname) draw_before_cut_dijet_p(sample, c, fs, processname) draw_before_cut_vis(sample, c, fs, processname) draw_before_cut_cos_miss(sample, c, fs, processname) # draw_before_cut_n_moun(sample, c, fs, processname) # draw_before_cut_n_photon(sample, c, fs, processname) else: draw_before_cut_Pt(sample, c, fs, processname) draw_before_cut_vdt(sample, c, fs, processname) draw_before_cut_theta(sample, c, fs, processname) draw_before_cut_vis(sample, c, fs, processname) draw_before_cut_Mmumu(sample, c, fs, processname) draw_before_cut_Mrecoil(sample, c, fs, processname) draw_before_cut_ep(sample, c, fs, processname)
def main(): set_root_style(stat=0, grid=0) ROOT.gStyle.SetPadLeftMargin(0.15) sample = sys.argv[1:] fs = get_files_from_sample(sample) c = ROOT.TCanvas('c', 'c', 800, 800) draw_ngam(sample, c, fs)
def main(): set_root_style(stat=0, grid=0) ROOT.gStyle.SetPadLeftMargin(0.15) sample = sys.argv[1:] fs = get_files_from_sample(sample) c = ROOT.TCanvas('c', 'c', 800, 800) draw_mrecpipi(sample, c, fs) draw_mpipi(sample, c, fs) draw_pip_p(sample, c, fs) draw_pim_p(sample, c, fs) draw_pip_costhe(sample, c, fs) draw_pim_costhe(sample, c, fs) draw_cospipi(sample, c, fs) draw_cos2pisys(sample, c, fs) draw_ngam(sample, c, fs)
def main(): set_root_style(stat=0, grid=0) ROOT.gStyle.SetPadLeftMargin(0.15) c = ROOT.TCanvas('c', 'c', 800, 800) f1 = ROOT.TFile('run/hist/data/jpsi2invi_data_merged_1.root') f2 = ROOT.TFile('run/hist/mc_psip12/jpsi2invi_mc_psip_12mc_merged_1.root') fs = [f1, f2] draw_mrecpipi(c, fs) draw_mpipi(c, fs) draw_pip_p(c, fs) draw_pim_p(c, fs) draw_pip_costhe(c, fs) draw_pim_costhe(c, fs) draw_cospipi(c, fs) draw_cos2pisys(c, fs) draw_ngam(c, fs)
def main(opts, args): tools.set_root_style() figname = 'fun_'+'_'.join(args).replace('/', '_') function = getattr(fun, args[0]) return function(opts, args[1:], figname)
def mbc_gau_che(evtfile, mc, setMres, setGamma, setR, sp1, sp2, sp3, fa, fb, setmd, setp, setxi, setN1, setN2, setNbkgd1, setNbkgd2, title1, title2, epsfile, txtfile, ymin=0.5, cuts=None, err_type='SYMM', test=False): from ROOT import (gROOT, RooRealVar, RooCategory, RooArgSet, RooDataSet, RooFit, RooGaussian, RooArgList, RooAddPdf, RooSimultaneous, RooArgusBG, RooFormulaVar, RooChebychev, RooAbsData, RooDataHist, TCanvas, kRed, kBlue, kGreen, kMagenta, TPaveText) set_root_style(stat=1, grid=0) mbc = RooRealVar('mbc', 'Beam constrained mass', 1.83, 1.89, 'GeV') ebeam = RooRealVar('ebeam', 'Ebeam', 1.8815, 1.892, 'GeV') dflav = RooCategory('dflav', 'D0 flavor') dflav.defineType('dflav', 1) dflav.defineType('dbarflav', -1) if cuts != None: if 'kkmass' in cuts: kkmass = RooRealVar('kkmass', 'KK invariant mass', 0.97, 1.90, 'GeV') ras = RooArgSet(mbc, ebeam, kkmass, dflav) dataset = RooDataSet.read(evtfile, ras) elif 'kpimass' in cuts: kpimass = RooRealVar('kpimass', 'Kpi invariant mass', 0.6, 1.4, 'GeV') ras = RooArgSet(mbc, ebeam, kpimass, dflav) dataset = RooDataSet.read(evtfile, ras) else: raise NameError(cuts) sys.stdout.write('Using cuts: %s...' % cuts) dataset = dataset.reduce(cuts) sys.stdout.write(' selected %s events.\n' % dataset.numEntries()) else: ras = RooArgSet(mbc, ebeam, dflav) dataset = RooDataSet.read(evtfile, ras) #sigma = RooRealVar('sigma', 'D width', 0.0001, 0.005, 'GeV') sigma = RooRealVar('sigma', 'D width', 0.00468, 'GeV') mbc_dp = RooRealVar('mbc_dp', 'D+ Mass', 1.86962, 'GeV') sigpdf = RooGaussian('gauss_dp', 'D+ gaussian', mbc, mbc_dp, sigma) #arg_cutoff = RooRealVar('arg_cutoff', 'Argus cutoff', 1.88, 1.89, 'GeV') #arg_slope = RooRealVar('arg_slope', 'Argus slope', -10, -100, -1) #bkgpdf = RooArgusBG('argus', 'Argus BG', mbc, arg_cutoff, arg_slope) con0 = RooRealVar('c0', 'constant', -1, 1) con1 = RooRealVar('c1', 'linear', -10, 10) con2 = RooRealVar('c2', 'quadratic', 1) bkgpdf = RooChebychev('bkgpdf', 'Background', mbc, RooArgList(con1, con2)) yld = RooRealVar('yld', 'D yield', 100, 0, 2000) bkg = RooRealVar('bkg', 'Background', 100, 0, 1000) sumpdf = RooAddPdf('sumpdf', 'Sum pdf', RooArgList(sigpdf, bkgpdf), RooArgList(yld, bkg)) yldbar = RooRealVar('yldbar', 'Dbar yield', 100, 0, 2000) bkgbar = RooRealVar('bkgbar', 'Background', 100, 0, 1000) sumpdfbar = RooAddPdf('sumpdfbar', 'Sum pdf', RooArgList(sigpdf, bkgpdf), RooArgList(yldbar, bkgbar)) totalpdf = RooSimultaneous('rs', 'Simultaneous PDF', dflav) totalpdf.addPdf(sumpdf, 'dflav') totalpdf.addPdf(sumpdfbar, 'dbarflav') MINUIT = 'ermh4' if err_type == 'ASYM': MINUIT = 'erh4' if test: sys.stdout.write('Will save epsfile as: %s \n' % epsfile) sys.stdout.write('Will save txtfile as: %s \n' % txtfile) return if dataset.numEntries() == 0: yld.setVal(0) yldbar.setVal(0) else: # Start Fitting fitres = totalpdf.fitTo(dataset, MINUIT) fitres.Print('v') # Save plots canvas = TCanvas('canvas', 'mbc', 400, 400) xframe = mbc.frame(50) ProjWData = RooFit.ProjWData(dataset) RooAbsData.plotOn(dataset, xframe) totalpdf.plotOn(xframe, ProjWData) totalpdf.paramOn(xframe) xframe.Draw() canvas.Print(epsfile) # Save fitting parameters pars = [bkg, bkgbar, con1, yld, yldbar] save_fit_result(pars, txtfile, err_type=err_type, verbose=1)
def mbc_single_3s(evtfile, mc, setMres, setGamma, setR, sp1, sp2, sp3, fa, fb, setmd, setp, setxi, setN1, setN2, setNbkgd1, setNbkgd2, title1, title2, epsfile, txtfile, ymin=0.5, cuts=None, err_type='SYMM', test=False): from ROOT import (gROOT, RooRealVar, RooCategory, RooArgSet, RooDataSet, RooFit, RooGaussian, RooArgList, RooAddPdf, RooSimultaneous, RooArgusBG, RooFormulaVar, RooDLineShape, RooAbsData, RooDataHist, TCanvas, kRed, kBlue, kGreen, kMagenta, TPaveText) set_root_style(stat=1, grid=0) # // sp1 = sigma of signal # // sp2 = ratio of sigmas betwwen sigma2 sigma 1 # // sp3 = ratio of sigmas betwwen sigma3 sigma 2 # // fa, fb, - fractions # // xi_side - slope of argus # // p_side - power of argus # mc = 1 Monte Carlo Model: EvtGenModels/Class/EvtVPHOtoVISR.cc # mc = 3 Data Model: with BES 2007 paper (BES2006 lineshape hepex/0612056) mbc = RooRealVar('mbc', 'Beam constrained mass', 1.83, 1.89, 'GeV') ebeam = RooRealVar('ebeam', 'Ebeam', 1.8815, 1.892, 'GeV') dflav = RooCategory('dflav', 'D flavor') dflav.defineType('dflav', 1) dflav.defineType('dbarflav', -1) if cuts != None: if 'kkmass' in cuts: kkmass = RooRealVar('kkmass', 'KK invariant mass', 0.97, 1.90, 'GeV') ras = RooArgSet(mbc, ebeam, kkmass, dflav) dataset = RooDataSet.read(evtfile, ras) elif 'kpimass' in cuts: kpimass = RooRealVar('kpimass', 'Kpi invariant mass', 0.6, 1.4, 'GeV') ras = RooArgSet(mbc, ebeam, kpimass, dflav) dataset = RooDataSet.read(evtfile, ras) else: raise NameError(cuts) sys.stdout.write('Using cuts: %s...' % cuts) dataset = dataset.reduce(cuts) sys.stdout.write(' selected %s events.\n' % dataset.numEntries()) else: ras = RooArgSet(mbc, ebeam, dflav) dataset = RooDataSet.read(evtfile, ras) res = RooRealVar("datares", "datares", mc) mres = RooRealVar("mres", "mres", setMres) gamma = RooRealVar('gamma', 'gamma', setGamma) r = RooRealVar('r', 'r', setR) sigmaE = RooRealVar("sigmaE", "sigmaE", 0.0021) sigmap1 = RooRealVar("sigmap1", "sigmap1", sp1, 0.002, 0.040) scalep2 = RooRealVar("scalep2", "scalep2", 2.00, 1.500, 5.500) scalep3 = RooRealVar("scalep3", "scalep3", 5.00, 3.00, 10.000) scalep2.setVal(sp2) scalep2.setConstant(1) scalep3.setVal(sp3) scalep3.setConstant(1) as12 = RooArgList(sigmap1, scalep2) sigmap2 = RooFormulaVar("sigmap2", "sigma2", "sigmap1*scalep2", as12) as123 = RooArgList(sigmap1, scalep2, scalep3) sigmap3 = RooFormulaVar("sigmap3", "sigma3", "sigmap1*scalep2*scalep3", as123) md = RooRealVar("md", "md", setmd, 1.863, 1.875) f2 = RooRealVar("f2", "f2", fa) f3 = RooRealVar("f3", "f3", fb) al23 = RooArgList(f2, f3) f1 = RooFormulaVar("f1", "f1", "1.0-f2-f3", al23) # Construct signal shape fcn1_1 = RooDLineShape("DLineshape1_1", "DLineShape1_1", 4, mbc, ebeam, mres, gamma, r, sigmaE, sigmap1, md, res) fcn1_2 = RooDLineShape("DLineshape1_2", "DLineShape1_2", 4, mbc, ebeam, mres, gamma, r, sigmaE, sigmap2, md, res) fcn1_3 = RooDLineShape("DLineshape1_3", "DLineShape1_3", 4, mbc, ebeam, mres, gamma, r, sigmaE, sigmap3, md, res) fcn2_1 = RooDLineShape("DLineshape2_1", "DLineShape2_1", 4, mbc, ebeam, mres, gamma, r, sigmaE, sigmap1, md, res) fcn2_2 = RooDLineShape("DLineshape2_2", "DLineShape2_2", 4, mbc, ebeam, mres, gamma, r, sigmaE, sigmap2, md, res) fcn2_3 = RooDLineShape("DLineshape2_3", "DLineShape2_3", 4, mbc, ebeam, mres, gamma, r, sigmaE, sigmap3, md, res) alf1_123 = RooArgList(fcn1_1, fcn1_2, fcn1_3) af12 = RooArgList(f1, f2) signal1_3 = RooAddPdf("signal1_3", "signal1_3", alf1_123, af12) alf2_123 = RooArgList(fcn2_1, fcn2_2, fcn2_3) signal2_3 = RooAddPdf("signal2_3", "signal2_3", alf2_123, af12) p = RooRealVar("p", "p", setp, 0.1, 1.5) xi = RooRealVar("xi", "xi", setxi, -100.0, -0.1) Bkgd1 = RooArgusBG("argus1", "argus1", mbc, ebeam, xi, p) Bkgd2 = RooArgusBG("argus2", "argus2", mbc, ebeam, xi, p) shapes1 = RooArgList(signal1_3) shapes1.add(signal1_3) shapes1.add(Bkgd1) shapes2 = RooArgList(signal2_3) shapes2.add(signal2_3) shapes2.add(Bkgd2) N1 = RooRealVar("N1", "N1", setN1, 0.0, 200000000.0) N2 = RooRealVar("N2", "N2", setN2, 0.0, 200000000.0) Nbkgd1 = RooRealVar("Nbkgd1", "Nbkgd1", setNbkgd1, 0.0, 200000000.0) Nbkgd2 = RooRealVar("Nbkgd2", "Nbkgd2", setNbkgd2, 0.0, 200000000.0) yields1 = RooArgList(N1) yields1.add(N1) yields1.add(Nbkgd1) yields2 = RooArgList(N2) yields2.add(N2) yields2.add(Nbkgd2) totalPdf1 = RooAddPdf("totalPdf1", "totalPdf1", shapes1, yields1) totalPdf2 = RooAddPdf("totalPdf2", "totalPdf2", shapes2, yields2) totalPdf = RooSimultaneous("totalPdf", "totalPdf", dflav) totalPdf.addPdf(totalPdf1, "dflav") totalPdf.addPdf(totalPdf2, "dbarflav") # Check fitTo options at: # http://root.cern.ch/root/html512/RooAbsPdf.html#RooAbsPdf:fitTo # # Available fit options: # "m" = MIGRAD only, i.e. no MINOS # "s" = estimate step size with HESSE before starting MIGRAD # "h" = run HESSE after MIGRAD # "e" = Perform extended MLL fit # "0" = Run MIGRAD with strategy MINUIT 0 # (no correlation matrix calculation at end) # Does not apply to HESSE or MINOS, if run afterwards. # "q" = Switch off verbose mode # "l" = Save log file with parameter values at each MINUIT step # "v" = Show changed parameters at each MINUIT step # "t" = Time fit # "r" = Save fit output in RooFitResult object # Available optimizer options # "c" = Cache and precalculate components of PDF that exclusively # depend on constant parameters # "2" = Do NLL calculation in multi-processor mode on 2 processors # "3" = Do NLL calculation in multi-processor mode on 3 processors # "4" = Do NLL calculation in multi-processor mode on 4 processors MINUIT = 'ermh4' if err_type == 'ASYM': MINUIT = 'erh4' if test: sys.stdout.write('Will save epsfile as: %s \n' % epsfile) sys.stdout.write('Will save txtfile as: %s \n' % txtfile) return if dataset.numEntries() == 0: N1.setVal(0) N2.setVal(0) else: # Start Fitting fitres = totalPdf.fitTo(dataset, MINUIT) fitres.Print('v') # Save plots canvas = TCanvas('canvas', 'mbc', 1200, 400) canvas.Divide(3, 1) canvas_1 = canvas.GetListOfPrimitives().FindObject('canvas_1') canvas_2 = canvas.GetListOfPrimitives().FindObject('canvas_2') canvas_1.SetLogy(1) canvas_2.SetLogy(1) LineColorRed = RooFit.LineColor(kRed) LineColorBlue = RooFit.LineColor(kBlue) LineWidth = RooFit.LineWidth(1) #0.6) # Plot the D canvas.cd(1) mbcFrame = mbc.frame() mbcFrame = mbc.frame(60) dflav.setLabel('dflav') ebas = RooArgSet(ebeam, dflav) ebeamdata = RooDataHist("ebeamdata", "ebeamdata", ebas, dataset) dataset.plotOn(mbcFrame, RooFit.Cut("dflav==dflav::dflav")) mbcFrame.getAttMarker().SetMarkerSize(0.6) mbcFrame.Draw() Slice = RooFit.Slice(dflav) ProjWData = RooFit.ProjWData(ebas, ebeamdata) totalPdf.plotOn(mbcFrame, LineColorRed, LineWidth, Slice, ProjWData) chisq1 = mbcFrame.chiSquare() * mbcFrame.GetNbinsX() mbcFrame.Draw() as_bkg1 = RooArgSet(Bkgd1) cp_bkg1 = RooFit.Components(as_bkg1) totalPdf.plotOn(mbcFrame, cp_bkg1, Slice, LineColorBlue, LineWidth, ProjWData) mbcFrame.SetTitle(title1) mbcFrame.SetMinimum(ymin) mbcFrame.Draw() # Plot the D bar canvas.cd(2) mbcFrame = mbc.frame() mbcFrame = mbc.frame(60) dflav.setLabel('dbarflav') ebas = RooArgSet(ebeam, dflav) ebeamdata = RooDataHist("ebeamdata", "ebeamdata", ebas, dataset) dataset.plotOn(mbcFrame, RooFit.Cut("dflav==dflav::dbarflav")) mbcFrame.getAttMarker().SetMarkerSize(0.6) mbcFrame.Draw() Slice = RooFit.Slice(dflav) ProjWData = RooFit.ProjWData(ebas, ebeamdata) totalPdf.plotOn(mbcFrame, LineColorRed, LineWidth, Slice, ProjWData) chisq2 = mbcFrame.chiSquare() * mbcFrame.GetNbinsX() mbcFrame.Draw() as_bkg2 = RooArgSet(Bkgd2) cp_bkg2 = RooFit.Components(as_bkg2) totalPdf.plotOn(mbcFrame, cp_bkg2, Slice, LineColorBlue, LineWidth, ProjWData) mbcFrame.SetTitle(title2) mbcFrame.SetMinimum(ymin) mbcFrame.Draw() # Plot Statistics Box canvas.cd(3) mbcFrame = mbc.frame() paramWin1 = totalPdf.paramOn(mbcFrame, dataset, "", 2, "NELU", 0.1, 0.9, 0.9) mbcFrame.GetXaxis().SetLabelSize(0) mbcFrame.GetXaxis().SetTickLength(0) mbcFrame.GetXaxis().SetLabelSize(0) mbcFrame.GetXaxis().SetTitle("") mbcFrame.GetXaxis().CenterTitle() mbcFrame.GetYaxis().SetLabelSize(0) mbcFrame.GetYaxis().SetTitleSize(0.03) mbcFrame.GetYaxis().SetTickLength(0) paramWin1.getAttText().SetTextSize(0.06) mbcFrame.Draw() mbcFrame.SetTitle("Fit Parameters") ATextBox = TPaveText(.1, .1, .8, .2, "BRNDC") tempString = "#chi^{2}_{1} = %.1f, #chi^{2}_{2} = %.1f" % (chisq1, chisq2) ATextBox.AddText(tempString) ATextBox.SetFillColor(0) ATextBox.SetBorderSize(1) mbcFrame.addObject(ATextBox) mbcFrame.Draw() canvas.Print(epsfile) rootfile = epsfile.replace('.eps', '.root') canvas.Print(rootfile) # Save fitting parameters pars = [N1, N2, Nbkgd1, Nbkgd2, md, p, sigmap1, xi] save_fit_result(pars, txtfile, err_type=err_type, verbose=1)
def main(opts, args): tools.set_root_style(stat=1, grid=0, PadTopMargin=0.1, PadLeftMargin = 0.15) parsed = parse_args(args) datatype = parsed[0] tag = parsed[1] modes = parsed[2] label = parsed[3] if tag != 'single': # only deal with single tag raise NameError(tag) figpath = os.path.join(attr.figpath, label, 'trkmtm') for mode in modes: modekey = tools.get_modekey(mode) selfile = get_selfile(datatype, mode, label, test=opts.test) efffile = selfile.replace('.root', '.db') sname = attr.modes[modekey]['sname'].lower() f = TFile(selfile) effs = shelve.open(efffile) if sname == 'kpipi0': h_pk = {}; h_ppi1 = {}; h_ppiz = {} for tp in ('mc', 'mctruth'): h_pk[tp] = f.Get('h_pk_' + tp) h_ppi1[tp] = f.Get('h_ppi1_' + tp) h_ppiz[tp] = f.Get('h_ppiz_' + tp) draw_effmomenta_kpipi0(figpath, effs, sname, h_pk, h_ppi1, h_ppiz) elif sname == 'k3pi': h_pk = {}; h_ppi1 = {}; h_ppi2 = {}; h_ppim = {} for tp in ('mc', 'mctruth'): h_pk[tp] = f.Get('h_pk_' + tp) h_ppi1[tp] = f.Get('h_ppi1_' + tp) h_ppi2[tp] = f.Get('h_ppi2_' + tp) h_ppim[tp] = f.Get('h_ppim_' + tp) draw_effmomenta_k3pi(figpath, effs, sname, h_pk, h_ppi1, h_ppi2, h_ppim) elif sname == 'kpipi': h_pk = {}; h_ppi1 = {}; h_ppi2 = {} for tp in ('mc', 'mctruth'): h_pk[tp] = f.Get('h_pk_' + tp) h_ppi1[tp] = f.Get('h_ppi1_' + tp) h_ppi2[tp] = f.Get('h_ppi2_' + tp) draw_effmomenta_kpipi(figpath, effs, sname, h_pk, h_ppi1, h_ppi2) elif sname == 'kpipipi0': h_pk = {}; h_ppi1 = {}; h_ppi2 = {}; h_ppiz = {} for tp in ('mc', 'mctruth'): h_pk[tp] = f.Get('h_pk_' + tp) h_ppi1[tp] = f.Get('h_ppi1_' + tp) h_ppi2[tp] = f.Get('h_ppi2_' + tp) h_ppiz[tp] = f.Get('h_ppim_' + tp) draw_effmomenta_kpipipi0(figpath, effs, sname, h_pk, h_ppi1, h_ppi2, h_ppiz) elif sname == 'kspipi0': h_pks = {}; h_ppi1 = {}; h_ppiz = {} for tp in ('mc', 'mctruth'): h_pks[tp] = f.Get('h_pks_' + tp) h_ppi1[tp] = f.Get('h_ppi1_' + tp) h_ppiz[tp] = f.Get('h_ppiz_' + tp) draw_effmomenta_kspipi0(figpath, effs, sname, h_pks, h_ppi1, h_ppiz) elif sname == 'ks3pi': h_pks = {}; h_ppi1 = {}; h_ppi2 = {}; h_ppim = {} for tp in ('mc', 'mctruth'): h_pks[tp] = f.Get('h_pk_' + tp) h_ppi1[tp] = f.Get('h_ppi1_' + tp) h_ppi2[tp] = f.Get('h_ppi2_' + tp) h_ppim[tp] = f.Get('h_ppim_' + tp) draw_effmomenta_ks3pi(figpath, effs, sname, h_pks, h_ppi1, h_ppi2, h_ppim) elif sname == 'kkpi': h_pkm = {}; h_pkp = {}; h_ppi = {} for tp in ('mc', 'mctruth'): h_pkm[tp] = f.Get('h_pkm_' + tp) h_pkp[tp] = f.Get('h_pkp_' + tp) h_ppi[tp] = f.Get('h_ppi_' + tp) draw_effmomenta_kkpi(figpath, effs, sname, h_pkp, h_pkm, h_ppi) else: raise NameError(sname)
def mbc_dline_che(evtfile, mc, setMres, setGamma, setR, sp1, sp2, sp3, fa, fb, setmd, setp, setxi, setN1, setN2, setNbkgd1, setNbkgd2, title1, title2, epsfile, txtfile, ymin=0.5, cuts=None, err_type='SYMM', test=False): from ROOT import (gROOT, RooRealVar, RooCategory, RooArgSet, RooDataSet, RooFit, RooGaussian, RooArgList, RooAddPdf, RooSimultaneous, RooArgusBG, RooFormulaVar, RooChebychev, RooAbsData, RooDataHist, TCanvas, kRed, kBlue, kGreen, kMagenta, TPaveText, RooDLineShape) set_root_style(stat=1, grid=0) mbc = RooRealVar('mbc', 'Beam constrained mass', 1.83, 1.89, 'GeV') ebeam = RooRealVar('ebeam','Ebeam', 1.8815, 1.892, 'GeV') dflav = RooCategory('dflav','D0 flavor') dflav.defineType('dflav',1) dflav.defineType('dbarflav',-1) if cuts != None: if 'kkmass' in cuts: kkmass = RooRealVar('kkmass', 'KK invariant mass', 0.97, 1.90, 'GeV') ras = RooArgSet(mbc, ebeam, kkmass, dflav) dataset = RooDataSet.read(evtfile, ras) else: raise NameError(cuts) sys.stdout.write('Using cuts: %s...' %cuts) dataset = dataset.reduce(cuts) sys.stdout.write(' selected %s events.\n' % dataset.numEntries()) else: ras = RooArgSet(mbc, ebeam, dflav) dataset = RooDataSet.read(evtfile, ras) res = RooRealVar("datares", "datares", mc) mres = RooRealVar("mres","mres", setMres) gamma = RooRealVar('gamma', 'gamma', setGamma) r = RooRealVar('r', 'r', setR) sigmaE = RooRealVar("sigmaE","sigmaE", 0.0021) sigmap1 = RooRealVar("sigmap1","sigmap1", sp1, 0.002, 0.040) scalep2 = RooRealVar("scalep2","scalep2",2.00,1.500,5.500) scalep3 = RooRealVar("scalep3","scalep3",5.00,3.00,10.000) scalep2.setVal(sp2) scalep2.setConstant(1) scalep3.setVal(sp3) scalep3.setConstant(1) as12 = RooArgList(sigmap1,scalep2) sigmap2 = RooFormulaVar("sigmap2","sigma2","sigmap1*scalep2", as12) as123 = RooArgList(sigmap1,scalep2,scalep3) sigmap3 = RooFormulaVar("sigmap3","sigma3","sigmap1*scalep2*scalep3", as123) md = RooRealVar("md","md", setmd,1.863,1.875) f2 = RooRealVar("f2","f2", fa) f3 = RooRealVar("f3","f3", fb) al23 = RooArgList(f2,f3) f1 = RooFormulaVar("f1","f1","1.0-f2-f3", al23) # Construct signal shape fcn1_1 = RooDLineShape("DLineshape1_1","DLineShape1_1",4,mbc,ebeam, mres,gamma,r,sigmaE,sigmap1,md,res) fcn1_2 = RooDLineShape("DLineshape1_2","DLineShape1_2",4,mbc,ebeam, mres,gamma,r,sigmaE,sigmap2,md,res) fcn1_3 = RooDLineShape("DLineshape1_3","DLineShape1_3",4,mbc,ebeam, mres,gamma,r,sigmaE,sigmap3,md,res) fcn2_1 = RooDLineShape("DLineshape2_1","DLineShape2_1",4,mbc,ebeam, mres,gamma,r,sigmaE,sigmap1,md,res) fcn2_2 = RooDLineShape("DLineshape2_2","DLineShape2_2",4,mbc,ebeam, mres,gamma,r,sigmaE,sigmap2,md,res) fcn2_3 = RooDLineShape("DLineshape2_3","DLineShape2_3",4,mbc,ebeam, mres,gamma,r,sigmaE,sigmap3,md,res) alf1_123 = RooArgList(fcn1_1,fcn1_2,fcn1_3) af12 = RooArgList(f1,f2) sigpdf = RooAddPdf("signal1_3","signal1_3", alf1_123, af12) alf2_123 = RooArgList(fcn2_1,fcn2_2,fcn2_3) sigbarpdf = RooAddPdf("signal2_3","signal2_3", alf2_123, af12) con0 = RooRealVar('c0', 'constant', -1, 1) con1 = RooRealVar('c1', 'linear', -10, 10) con2 = RooRealVar('c2', 'quadratic', 1) bkgpdf = RooChebychev('bkgpdf', 'Background', mbc, RooArgList(con1, con2)) bkgbarpdf = RooChebychev('bkgbarpdf', 'Background', mbc, RooArgList(con1, con2)) yld = RooRealVar('yld', 'D yield', 100, 0, 2000) bkg = RooRealVar('bkg', 'Background', 100, 0, 1000) sumpdf = RooAddPdf('sumpdf', 'Sum pdf', RooArgList(sigpdf, bkgpdf), RooArgList(yld, bkg)) yldbar = RooRealVar('yldbar', 'Dbar yield', 100, 0, 2000) bkgbar = RooRealVar('bkgbar', 'Background', 100, 0, 1000) sumpdfbar = RooAddPdf('sumpdfbar', 'Sum pdf', RooArgList(sigbarpdf, bkgbarpdf), RooArgList(yldbar, bkgbar)) totalpdf = RooSimultaneous('rs', 'Simultaneous PDF', dflav) totalpdf.addPdf(sumpdf, 'dflav') totalpdf.addPdf(sumpdfbar, 'dbarflav') MINUIT = 'ermh4' if err_type == 'ASYM': MINUIT = 'erh4' if test: sys.stdout.write('Will save epsfile as: %s \n' %epsfile) sys.stdout.write('Will save txtfile as: %s \n' %txtfile) return if dataset.numEntries() == 0: yld.setVal(0) yldbar.setVal(0) else: # Start Fitting fitres = totalpdf.fitTo(dataset, MINUIT) fitres.Print('v') # Save plots canvas = TCanvas('canvas','mbc', 400, 400); xframe=mbc.frame(50) ProjWData = RooFit.ProjWData(dataset) RooAbsData.plotOn(dataset, xframe) totalpdf.plotOn(xframe, ProjWData) totalpdf.paramOn(xframe) xframe.Draw() canvas.Print(epsfile) # Save fitting parameters pars = [bkg, bkgbar, con1, md, sigmap1, yld, yldbar] save_fit_result(pars, txtfile, err_type=err_type, verbose=1)
def mbc_gau_che(evtfile, mc, setMres, setGamma, setR, sp1, sp2, sp3, fa, fb, setmd, setp, setxi, setN1, setN2, setNbkgd1, setNbkgd2, title1, title2, epsfile, txtfile, ymin=0.5, cuts=None, err_type='SYMM', test=False): from ROOT import (gROOT, RooRealVar, RooCategory, RooArgSet, RooDataSet, RooFit, RooGaussian, RooArgList, RooAddPdf, RooSimultaneous, RooArgusBG, RooFormulaVar, RooChebychev, RooAbsData, RooDataHist, TCanvas, kRed, kBlue, kGreen, kMagenta, TPaveText) set_root_style(stat=1, grid=0) mbc = RooRealVar('mbc', 'Beam constrained mass', 1.83, 1.89, 'GeV') ebeam = RooRealVar('ebeam','Ebeam', 1.8815, 1.892, 'GeV') dflav = RooCategory('dflav','D0 flavor') dflav.defineType('dflav',1) dflav.defineType('dbarflav',-1) if cuts != None: if 'kkmass' in cuts: kkmass = RooRealVar('kkmass', 'KK invariant mass', 0.97, 1.90, 'GeV') ras = RooArgSet(mbc, ebeam, kkmass, dflav) dataset = RooDataSet.read(evtfile, ras) elif 'kpimass' in cuts: kpimass = RooRealVar('kpimass', 'Kpi invariant mass', 0.6, 1.4, 'GeV') ras = RooArgSet(mbc, ebeam, kpimass, dflav) dataset = RooDataSet.read(evtfile, ras) else: raise NameError(cuts) sys.stdout.write('Using cuts: %s...' %cuts) dataset = dataset.reduce(cuts) sys.stdout.write(' selected %s events.\n' % dataset.numEntries()) else: ras = RooArgSet(mbc, ebeam, dflav) dataset = RooDataSet.read(evtfile, ras) #sigma = RooRealVar('sigma', 'D width', 0.0001, 0.005, 'GeV') sigma = RooRealVar('sigma', 'D width', 0.00468, 'GeV') mbc_dp = RooRealVar('mbc_dp', 'D+ Mass', 1.86962, 'GeV') sigpdf = RooGaussian('gauss_dp', 'D+ gaussian', mbc, mbc_dp, sigma) #arg_cutoff = RooRealVar('arg_cutoff', 'Argus cutoff', 1.88, 1.89, 'GeV') #arg_slope = RooRealVar('arg_slope', 'Argus slope', -10, -100, -1) #bkgpdf = RooArgusBG('argus', 'Argus BG', mbc, arg_cutoff, arg_slope) con0 = RooRealVar('c0', 'constant', -1, 1) con1 = RooRealVar('c1', 'linear', -10, 10) con2 = RooRealVar('c2', 'quadratic', 1) bkgpdf = RooChebychev('bkgpdf', 'Background', mbc, RooArgList(con1, con2)) yld = RooRealVar('yld', 'D yield', 100, 0, 2000) bkg = RooRealVar('bkg', 'Background', 100, 0, 1000) sumpdf = RooAddPdf('sumpdf', 'Sum pdf', RooArgList(sigpdf, bkgpdf), RooArgList(yld, bkg)) yldbar = RooRealVar('yldbar', 'Dbar yield', 100, 0, 2000) bkgbar = RooRealVar('bkgbar', 'Background', 100, 0, 1000) sumpdfbar = RooAddPdf('sumpdfbar', 'Sum pdf', RooArgList(sigpdf, bkgpdf), RooArgList(yldbar, bkgbar)) totalpdf = RooSimultaneous('rs', 'Simultaneous PDF', dflav) totalpdf.addPdf(sumpdf, 'dflav') totalpdf.addPdf(sumpdfbar, 'dbarflav') MINUIT = 'ermh4' if err_type == 'ASYM': MINUIT = 'erh4' if test: sys.stdout.write('Will save epsfile as: %s \n' %epsfile) sys.stdout.write('Will save txtfile as: %s \n' %txtfile) return if dataset.numEntries() == 0: yld.setVal(0) yldbar.setVal(0) else: # Start Fitting fitres = totalpdf.fitTo(dataset, MINUIT) fitres.Print('v') # Save plots canvas = TCanvas('canvas','mbc', 400, 400); xframe=mbc.frame(50) ProjWData = RooFit.ProjWData(dataset) RooAbsData.plotOn(dataset, xframe) totalpdf.plotOn(xframe, ProjWData) totalpdf.paramOn(xframe) xframe.Draw() canvas.Print(epsfile) # Save fitting parameters pars = [bkg, bkgbar, con1, yld, yldbar] save_fit_result(pars, txtfile, err_type=err_type, verbose=1)
def mbc_single_3s(evtfile, mc, setMres, setGamma, setR, sp1, sp2, sp3, fa, fb, setmd, setp, setxi, setN1, setN2, setNbkgd1, setNbkgd2, title1, title2, epsfile, txtfile, ymin=0.5, cuts=None, err_type='SYMM', test=False): from ROOT import (gROOT, RooRealVar, RooCategory, RooArgSet, RooDataSet, RooFit, RooGaussian, RooArgList, RooAddPdf, RooSimultaneous, RooArgusBG, RooFormulaVar, RooDLineShape, RooAbsData, RooDataHist, TCanvas, kRed, kBlue, kGreen, kMagenta, TPaveText) set_root_style(stat=1, grid=0) # // sp1 = sigma of signal # // sp2 = ratio of sigmas betwwen sigma2 sigma 1 # // sp3 = ratio of sigmas betwwen sigma3 sigma 2 # // fa, fb, - fractions # // xi_side - slope of argus # // p_side - power of argus # mc = 1 Monte Carlo Model: EvtGenModels/Class/EvtVPHOtoVISR.cc # mc = 3 Data Model: with BES 2007 paper (BES2006 lineshape hepex/0612056) mbc = RooRealVar('mbc', 'Beam constrained mass', 1.83, 1.89, 'GeV') ebeam = RooRealVar('ebeam', 'Ebeam', 1.8815, 1.892, 'GeV') dflav = RooCategory('dflav','D flavor') dflav.defineType('dflav', 1) dflav.defineType('dbarflav', -1) if cuts != None: if 'kkmass' in cuts: kkmass = RooRealVar('kkmass', 'KK invariant mass', 0.97, 1.90, 'GeV') ras = RooArgSet(mbc, ebeam, kkmass, dflav) dataset = RooDataSet.read(evtfile, ras) elif 'kpimass' in cuts: kpimass = RooRealVar('kpimass', 'Kpi invariant mass', 0.6, 1.4, 'GeV') ras = RooArgSet(mbc, ebeam, kpimass, dflav) dataset = RooDataSet.read(evtfile, ras) else: raise NameError(cuts) sys.stdout.write('Using cuts: %s...' %cuts) dataset = dataset.reduce(cuts) sys.stdout.write(' selected %s events.\n' % dataset.numEntries()) else: ras = RooArgSet(mbc, ebeam, dflav) dataset = RooDataSet.read(evtfile, ras) res = RooRealVar("datares", "datares", mc) mres = RooRealVar("mres","mres", setMres) gamma = RooRealVar('gamma', 'gamma', setGamma) r = RooRealVar('r', 'r', setR) sigmaE = RooRealVar("sigmaE","sigmaE", 0.0021) sigmap1 = RooRealVar("sigmap1","sigmap1", sp1, 0.002, 0.040) scalep2 = RooRealVar("scalep2","scalep2",2.00,1.500,5.500) scalep3 = RooRealVar("scalep3","scalep3",5.00,3.00,10.000) scalep2.setVal(sp2) scalep2.setConstant(1) scalep3.setVal(sp3) scalep3.setConstant(1) as12 = RooArgList(sigmap1,scalep2) sigmap2 = RooFormulaVar("sigmap2","sigma2","sigmap1*scalep2", as12) as123 = RooArgList(sigmap1,scalep2,scalep3) sigmap3 = RooFormulaVar("sigmap3","sigma3","sigmap1*scalep2*scalep3", as123) md = RooRealVar("md","md", setmd,1.863,1.875) f2 = RooRealVar("f2","f2", fa) f3 = RooRealVar("f3","f3", fb) al23 = RooArgList(f2,f3) f1 = RooFormulaVar("f1","f1","1.0-f2-f3", al23) # Construct signal shape fcn1_1 = RooDLineShape("DLineshape1_1","DLineShape1_1",4,mbc,ebeam, mres,gamma,r,sigmaE,sigmap1,md,res) fcn1_2 = RooDLineShape("DLineshape1_2","DLineShape1_2",4,mbc,ebeam, mres,gamma,r,sigmaE,sigmap2,md,res) fcn1_3 = RooDLineShape("DLineshape1_3","DLineShape1_3",4,mbc,ebeam, mres,gamma,r,sigmaE,sigmap3,md,res) fcn2_1 = RooDLineShape("DLineshape2_1","DLineShape2_1",4,mbc,ebeam, mres,gamma,r,sigmaE,sigmap1,md,res) fcn2_2 = RooDLineShape("DLineshape2_2","DLineShape2_2",4,mbc,ebeam, mres,gamma,r,sigmaE,sigmap2,md,res) fcn2_3 = RooDLineShape("DLineshape2_3","DLineShape2_3",4,mbc,ebeam, mres,gamma,r,sigmaE,sigmap3,md,res) alf1_123 = RooArgList(fcn1_1,fcn1_2,fcn1_3) af12 = RooArgList(f1,f2) signal1_3 = RooAddPdf("signal1_3","signal1_3", alf1_123, af12) alf2_123 = RooArgList(fcn2_1,fcn2_2,fcn2_3) signal2_3 = RooAddPdf("signal2_3","signal2_3", alf2_123, af12) p = RooRealVar("p","p", setp, 0.1, 1.5) xi= RooRealVar("xi","xi",setxi,-100.0,-0.1) Bkgd1 = RooArgusBG("argus1","argus1",mbc,ebeam,xi,p) Bkgd2 = RooArgusBG("argus2","argus2",mbc,ebeam,xi,p) shapes1 = RooArgList(signal1_3) shapes1.add(signal1_3) shapes1.add(Bkgd1) shapes2 = RooArgList(signal2_3) shapes2.add(signal2_3) shapes2.add(Bkgd2) N1 = RooRealVar("N1","N1",setN1,0.0,200000000.0) N2 = RooRealVar("N2","N2",setN2,0.0,200000000.0) Nbkgd1 = RooRealVar("Nbkgd1","Nbkgd1",setNbkgd1, 0.0, 200000000.0) Nbkgd2 = RooRealVar("Nbkgd2","Nbkgd2",setNbkgd2, 0.0, 200000000.0) yields1 = RooArgList(N1) yields1.add(N1) yields1.add(Nbkgd1) yields2 = RooArgList(N2) yields2.add(N2) yields2.add(Nbkgd2) totalPdf1 = RooAddPdf("totalPdf1","totalPdf1", shapes1,yields1) totalPdf2 = RooAddPdf("totalPdf2","totalPdf2", shapes2,yields2) totalPdf = RooSimultaneous("totalPdf","totalPdf",dflav) totalPdf.addPdf(totalPdf1,"dflav") totalPdf.addPdf(totalPdf2,"dbarflav") # Check fitTo options at: # http://root.cern.ch/root/html512/RooAbsPdf.html#RooAbsPdf:fitTo # # Available fit options: # "m" = MIGRAD only, i.e. no MINOS # "s" = estimate step size with HESSE before starting MIGRAD # "h" = run HESSE after MIGRAD # "e" = Perform extended MLL fit # "0" = Run MIGRAD with strategy MINUIT 0 # (no correlation matrix calculation at end) # Does not apply to HESSE or MINOS, if run afterwards. # "q" = Switch off verbose mode # "l" = Save log file with parameter values at each MINUIT step # "v" = Show changed parameters at each MINUIT step # "t" = Time fit # "r" = Save fit output in RooFitResult object # Available optimizer options # "c" = Cache and precalculate components of PDF that exclusively # depend on constant parameters # "2" = Do NLL calculation in multi-processor mode on 2 processors # "3" = Do NLL calculation in multi-processor mode on 3 processors # "4" = Do NLL calculation in multi-processor mode on 4 processors MINUIT = 'ermh4' if err_type == 'ASYM': MINUIT = 'erh4' if test: sys.stdout.write('Will save epsfile as: %s \n' %epsfile) sys.stdout.write('Will save txtfile as: %s \n' %txtfile) return if dataset.numEntries() == 0: N1.setVal(0) N2.setVal(0) else: # Start Fitting fitres = totalPdf.fitTo(dataset, MINUIT) fitres.Print('v') # Save plots canvas = TCanvas('canvas','mbc', 1200, 400); canvas.Divide(3,1) canvas_1 = canvas.GetListOfPrimitives().FindObject('canvas_1') canvas_2 = canvas.GetListOfPrimitives().FindObject('canvas_2') canvas_1.SetLogy(1) canvas_2.SetLogy(1) LineColorRed = RooFit.LineColor(kRed) LineColorBlue = RooFit.LineColor(kBlue) LineWidth = RooFit.LineWidth(1) #0.6) # Plot the D canvas.cd(1) mbcFrame=mbc.frame() mbcFrame=mbc.frame(60) dflav.setLabel('dflav') ebas = RooArgSet(ebeam, dflav) ebeamdata = RooDataHist("ebeamdata", "ebeamdata", ebas, dataset) dataset.plotOn(mbcFrame, RooFit.Cut("dflav==dflav::dflav")) mbcFrame.getAttMarker().SetMarkerSize(0.6) mbcFrame.Draw() Slice = RooFit.Slice(dflav) ProjWData = RooFit.ProjWData(ebas, ebeamdata) totalPdf.plotOn(mbcFrame, LineColorRed, LineWidth, Slice, ProjWData) chisq1 = mbcFrame.chiSquare()*mbcFrame.GetNbinsX() mbcFrame.Draw() as_bkg1 = RooArgSet(Bkgd1) cp_bkg1 = RooFit.Components(as_bkg1) totalPdf.plotOn(mbcFrame, cp_bkg1, Slice, LineColorBlue, LineWidth, ProjWData) mbcFrame.SetTitle(title1) mbcFrame.SetMinimum(ymin) mbcFrame.Draw() # Plot the D bar canvas.cd(2) mbcFrame=mbc.frame() mbcFrame=mbc.frame(60) dflav.setLabel('dbarflav') ebas = RooArgSet(ebeam, dflav) ebeamdata = RooDataHist("ebeamdata", "ebeamdata", ebas, dataset) dataset.plotOn(mbcFrame, RooFit.Cut("dflav==dflav::dbarflav")) mbcFrame.getAttMarker().SetMarkerSize(0.6) mbcFrame.Draw() Slice = RooFit.Slice(dflav) ProjWData = RooFit.ProjWData(ebas, ebeamdata) totalPdf.plotOn(mbcFrame, LineColorRed, LineWidth, Slice, ProjWData) chisq2 = mbcFrame.chiSquare()*mbcFrame.GetNbinsX() mbcFrame.Draw() as_bkg2 = RooArgSet(Bkgd2) cp_bkg2 = RooFit.Components(as_bkg2) totalPdf.plotOn(mbcFrame, cp_bkg2, Slice, LineColorBlue, LineWidth, ProjWData) mbcFrame.SetTitle(title2) mbcFrame.SetMinimum(ymin) mbcFrame.Draw() # Plot Statistics Box canvas.cd(3) mbcFrame = mbc.frame() paramWin1 = totalPdf.paramOn(mbcFrame,dataset, "",2,"NELU",0.1,0.9,0.9) mbcFrame.GetXaxis().SetLabelSize(0) mbcFrame.GetXaxis().SetTickLength(0) mbcFrame.GetXaxis().SetLabelSize(0) mbcFrame.GetXaxis().SetTitle("") mbcFrame.GetXaxis().CenterTitle() mbcFrame.GetYaxis().SetLabelSize(0) mbcFrame.GetYaxis().SetTitleSize(0.03) mbcFrame.GetYaxis().SetTickLength(0) paramWin1.getAttText().SetTextSize(0.06) mbcFrame.Draw() mbcFrame.SetTitle("Fit Parameters") ATextBox = TPaveText(.1, .1, .8, .2,"BRNDC") tempString = "#chi^{2}_{1} = %.1f, #chi^{2}_{2} = %.1f" % (chisq1,chisq2) ATextBox.AddText(tempString) ATextBox.SetFillColor(0) ATextBox.SetBorderSize(1) mbcFrame.addObject(ATextBox) mbcFrame.Draw() canvas.Print(epsfile) rootfile = epsfile.replace('.eps', '.root') canvas.Print(rootfile) # Save fitting parameters pars = [N1, N2, Nbkgd1, Nbkgd2, md, p, sigmap1, xi] save_fit_result(pars, txtfile, err_type=err_type, verbose=1)
def main(opts, args): tools.set_root_style() figname = 'evt_' + '_'.join(args).replace('/', '_') function = getattr(evt, args[0]) return function(opts, args[1:], figname)
def mbc_dline_che(evtfile, mc, setMres, setGamma, setR, sp1, sp2, sp3, fa, fb, setmd, setp, setxi, setN1, setN2, setNbkgd1, setNbkgd2, title1, title2, epsfile, txtfile, ymin=0.5, cuts=None, err_type='SYMM', test=False): from ROOT import (gROOT, RooRealVar, RooCategory, RooArgSet, RooDataSet, RooFit, RooGaussian, RooArgList, RooAddPdf, RooSimultaneous, RooArgusBG, RooFormulaVar, RooChebychev, RooAbsData, RooDataHist, TCanvas, kRed, kBlue, kGreen, kMagenta, TPaveText, RooDLineShape) set_root_style(stat=1, grid=0) mbc = RooRealVar('mbc', 'Beam constrained mass', 1.83, 1.89, 'GeV') ebeam = RooRealVar('ebeam', 'Ebeam', 1.8815, 1.892, 'GeV') dflav = RooCategory('dflav', 'D0 flavor') dflav.defineType('dflav', 1) dflav.defineType('dbarflav', -1) if cuts != None: if 'kkmass' in cuts: kkmass = RooRealVar('kkmass', 'KK invariant mass', 0.97, 1.90, 'GeV') ras = RooArgSet(mbc, ebeam, kkmass, dflav) dataset = RooDataSet.read(evtfile, ras) else: raise NameError(cuts) sys.stdout.write('Using cuts: %s...' % cuts) dataset = dataset.reduce(cuts) sys.stdout.write(' selected %s events.\n' % dataset.numEntries()) else: ras = RooArgSet(mbc, ebeam, dflav) dataset = RooDataSet.read(evtfile, ras) res = RooRealVar("datares", "datares", mc) mres = RooRealVar("mres", "mres", setMres) gamma = RooRealVar('gamma', 'gamma', setGamma) r = RooRealVar('r', 'r', setR) sigmaE = RooRealVar("sigmaE", "sigmaE", 0.0021) sigmap1 = RooRealVar("sigmap1", "sigmap1", sp1, 0.002, 0.040) scalep2 = RooRealVar("scalep2", "scalep2", 2.00, 1.500, 5.500) scalep3 = RooRealVar("scalep3", "scalep3", 5.00, 3.00, 10.000) scalep2.setVal(sp2) scalep2.setConstant(1) scalep3.setVal(sp3) scalep3.setConstant(1) as12 = RooArgList(sigmap1, scalep2) sigmap2 = RooFormulaVar("sigmap2", "sigma2", "sigmap1*scalep2", as12) as123 = RooArgList(sigmap1, scalep2, scalep3) sigmap3 = RooFormulaVar("sigmap3", "sigma3", "sigmap1*scalep2*scalep3", as123) md = RooRealVar("md", "md", setmd, 1.863, 1.875) f2 = RooRealVar("f2", "f2", fa) f3 = RooRealVar("f3", "f3", fb) al23 = RooArgList(f2, f3) f1 = RooFormulaVar("f1", "f1", "1.0-f2-f3", al23) # Construct signal shape fcn1_1 = RooDLineShape("DLineshape1_1", "DLineShape1_1", 4, mbc, ebeam, mres, gamma, r, sigmaE, sigmap1, md, res) fcn1_2 = RooDLineShape("DLineshape1_2", "DLineShape1_2", 4, mbc, ebeam, mres, gamma, r, sigmaE, sigmap2, md, res) fcn1_3 = RooDLineShape("DLineshape1_3", "DLineShape1_3", 4, mbc, ebeam, mres, gamma, r, sigmaE, sigmap3, md, res) fcn2_1 = RooDLineShape("DLineshape2_1", "DLineShape2_1", 4, mbc, ebeam, mres, gamma, r, sigmaE, sigmap1, md, res) fcn2_2 = RooDLineShape("DLineshape2_2", "DLineShape2_2", 4, mbc, ebeam, mres, gamma, r, sigmaE, sigmap2, md, res) fcn2_3 = RooDLineShape("DLineshape2_3", "DLineShape2_3", 4, mbc, ebeam, mres, gamma, r, sigmaE, sigmap3, md, res) alf1_123 = RooArgList(fcn1_1, fcn1_2, fcn1_3) af12 = RooArgList(f1, f2) sigpdf = RooAddPdf("signal1_3", "signal1_3", alf1_123, af12) alf2_123 = RooArgList(fcn2_1, fcn2_2, fcn2_3) sigbarpdf = RooAddPdf("signal2_3", "signal2_3", alf2_123, af12) con0 = RooRealVar('c0', 'constant', -1, 1) con1 = RooRealVar('c1', 'linear', -10, 10) con2 = RooRealVar('c2', 'quadratic', 1) bkgpdf = RooChebychev('bkgpdf', 'Background', mbc, RooArgList(con1, con2)) bkgbarpdf = RooChebychev('bkgbarpdf', 'Background', mbc, RooArgList(con1, con2)) yld = RooRealVar('yld', 'D yield', 100, 0, 2000) bkg = RooRealVar('bkg', 'Background', 100, 0, 1000) sumpdf = RooAddPdf('sumpdf', 'Sum pdf', RooArgList(sigpdf, bkgpdf), RooArgList(yld, bkg)) yldbar = RooRealVar('yldbar', 'Dbar yield', 100, 0, 2000) bkgbar = RooRealVar('bkgbar', 'Background', 100, 0, 1000) sumpdfbar = RooAddPdf('sumpdfbar', 'Sum pdf', RooArgList(sigbarpdf, bkgbarpdf), RooArgList(yldbar, bkgbar)) totalpdf = RooSimultaneous('rs', 'Simultaneous PDF', dflav) totalpdf.addPdf(sumpdf, 'dflav') totalpdf.addPdf(sumpdfbar, 'dbarflav') MINUIT = 'ermh4' if err_type == 'ASYM': MINUIT = 'erh4' if test: sys.stdout.write('Will save epsfile as: %s \n' % epsfile) sys.stdout.write('Will save txtfile as: %s \n' % txtfile) return if dataset.numEntries() == 0: yld.setVal(0) yldbar.setVal(0) else: # Start Fitting fitres = totalpdf.fitTo(dataset, MINUIT) fitres.Print('v') # Save plots canvas = TCanvas('canvas', 'mbc', 400, 400) xframe = mbc.frame(50) ProjWData = RooFit.ProjWData(dataset) RooAbsData.plotOn(dataset, xframe) totalpdf.plotOn(xframe, ProjWData) totalpdf.paramOn(xframe) xframe.Draw() canvas.Print(epsfile) # Save fitting parameters pars = [bkg, bkgbar, con1, md, sigmap1, yld, yldbar] save_fit_result(pars, txtfile, err_type=err_type, verbose=1)