Esempio n. 1
0
def recog(fname_or_list, train=None):
    """
    识别 demo,输入一个或多个视频文件路径,返回识别结果
    """
    if train is None:
        train = trainer(is_recog=True)
        train.saver.restore(train.sess, train.model_fname)
    if not isinstance(fname_or_list, list):
        fname_or_list = [fname_or_list]
    with timer('识别视频') as t:
        probs, labels = train.recog(fname_or_list)
        delta = t.duration()
    is_all_test_set = False
    if fname_or_list == train.batch_generator.test_fname_list:
        is_all_test_set = True
        top_accs = [0 for _ in range(5)]
    for i in range(len(probs)):
        print('--------------------------------------------------')
        fname = fname_or_list[i]
        prob = probs[i]
        label = labels[i]
        cls_name = train.batch_generator.cls_list[label]
        str_format = '%s 的预测标签为:%d,预测类别为:%s' % (fname, label, cls_name)
        print(str_format)
        prob = prob.tolist()
        if is_all_test_set:
            true_label = train.batch_generator.test_fname_to_label[fname]
        print('Top-5 预测概率值分别为:')
        top_5_index = np.argsort(prob)[::-1][:5]
        for i in range(0, len(top_5_index), 2):
            index = top_5_index[i]
            if is_all_test_set:
                if true_label in top_5_index[:i+1]:
                    top_accs[i] += 1
            str_format = '标签:%d - 类别名:%s - 概率值:%f'
            cls_name = train.batch_generator.cls_list[index]
            p = prob[index]
            print(str_format % (index, cls_name, p))

    print('--------------------------------------------------')
    print('以上为所有输入视频的预测标签、类别名和预测概率值')
    print('总视频数为:%d' % len(fname_or_list))
    print('视频总用时:%.3f' % delta)
    speed = delta / len(fname_or_list)
    print('识别平均速度为:%.3f sec/视频' % speed)

    if is_all_test_set:
        print('++++++++++++++++++++++++++++++++++++++++++++++++++')
        print('当前使用所有测试集作为演示,可计算准确率,准确率如下:')
        for i in range(0, len(top_accs), 2):
            print('Top-%d准确率为:%.4f' % (i+1, top_accs[i] / len(fname_or_list)))
    train.close()
Esempio n. 2
0
import sys
import bmp
import prep
import tools
import solver
import postpro
import deformed
import gallery
import version
import prob
import copy
import plast
import gc

#start timer
TIME = tools.timer()

#welcome message
print("")
print("GRoT> ver. " + version.get() + ", [Graficzny Rozwiązywacz Tarcz]")
print("................................................\n")

#read optional command line arguments for input and output path folder
PROJECT_PATH = False #project will contain input bmp image and input.txt with parameters
RESULT_PATH = False #result will contain output of grot
args = sys.argv

if len(args) > 1:
    for i in range(len(args)):
        if args[i] == "-i":
            PROJECT_PATH = args[i + 1]
Esempio n. 3
0

if __name__ == '__main__':
    # verify GPU is available
    if not cuda.is_available():
        raise CudaSupportError("No CUDA-compatible device found")

    # initialize coordinate grid (in degrees)
    ha0 = 30.
    dec0 = 45.
    dhacosdec = np.linspace(-.5, .5, 128, dtype=np.float32)
    ddec = np.linspace(-.5, .5, 128, dtype=np.float32)
    dHACOSDEC, dDEC = np.meshgrid(dhacosdec, ddec)

    # run beamformer
    with timer('GPU'):
        bf_gpu = BeamformerGPU(ha0, dec0, dHACOSDEC, dDEC)
    # bf_gpu.tabs shape is (ntab, nfreq, ndec, nha)
    # select one dec
    bf_gpu.tabs = bf_gpu.tabs[:, :, 63]

    # plot a few tabs
    tabs_to_plot = [0, 3, 6, 9]
    fig, axes = plt.subplots(nrows=2,
                             ncols=2,
                             figsize=(8, 8),
                             sharex=True,
                             sharey=True)
    axes = axes.flatten()

    X, Y = np.meshgrid(dhacosdec, bf_gpu.freqs)
Esempio n. 4
0
from tools import timer
from datetime import datetime

# print(str(sys.argv))
# try:
#     s = sys.argv[1]
# except:
#     pass
# print(s)
# exit()


col_news = db["news"]
col_rss = db["rss"]
col_rss_log = db["rss_log"]
t = timer()

# col_rss = db['rss']
# for item in rss_links:
#     item['handy'] = 1
#     item['active'] = 1
#     col_rss.insert(item)
# exit()


from lxml import etree

parser = etree.HTMLParser()
tree = etree.parse(
    "http://www.dailymail.co.uk/sport/football/article-3437261/Real-Madrid-just-11-fans-attend-win-Granada-Spanish-averse-travelling-away-games.html?ITO=1490&ns_mchannel=rss&ns_campaign=1490",
    parser,
target = target[:10000]
test = test[:10000]

# Actual Run Code
lable_group = LabelEncoder()
Y = lable_group.fit_transform(target)  # 变成一个列表
classes_ = lable_group.classes_
print('Y\n', Y)
print('classes_\n', classes_)

# enter the number of folds from xgb.cv
ntest = test.shape[0]
folds = 5
early_stopping = 50
oof_test = np.zeros((ntest, 6))
start_time = timer(None)

# Load data set and target values
# test = test.loc[:, ~test.columns.duplicated()]
# print('test\n', test)

d_test = xgb.DMatrix(test.values)

# In[ ]:

# set up KFold that matches xgb.cv number of folds
kf = StratifiedKFold(n_splits=folds, random_state=0)

# Start the CV
acc = []
for i, (train_index, test_index) in enumerate(kf.split(train, Y)):
Esempio n. 6
0
from tools import timer
from datetime import  datetime

# print(str(sys.argv))
# try:
#     s = sys.argv[1]
# except:
#     pass
# print(s)
# exit()


col_news = db['news']
col_rss = db['rss']
col_rss_log = db['rss_log']
t = timer()

# col_rss = db['rss']
# for item in rss_links:
#     item['handy'] = 1
#     item['active'] = 1
#     col_rss.insert(item)
# exit()




from lxml import etree
parser = etree.HTMLParser()
tree = etree.parse("http://www.dailymail.co.uk/sport/football/article-3437261/Real-Madrid-just-11-fans-attend-win-Granada-Spanish-averse-travelling-away-games.html?ITO=1490&ns_mchannel=rss&ns_campaign=1490", parser)
print(tree)
Esempio n. 7
0
    # reference frequency for dedispersion, use highest frequency
    ref_freq = freqs.max()

    # construct dm range to search around known value
    dm_offsets = np.arange(-16, 16, .1, dtype=np.float32)
    ndm = len(dm_offsets)

    print("CUDA info:")
    cuda.detect()
    print("DMs: {}".format(ndm))
    print("Freqs: {}".format(nfreq))
    print("Times: {}".format(ntime))

    # serial CPU. CPU is assumed to be right
    with timer('CPU'):
        truth = dedisp_cpu(data, dm_offsets, freqs)

    # Parallelized CPU.
    with timer('CPU parallel'):
        cpu_par = dedisp_cpu_par(data, dm_offsets, freqs)
    assert np.allclose(cpu_par, truth, atol=1E-6)

    # GPU
    gpu = cuda.get_current_device()
    nthread = (gpu.WARP_SIZE, gpu.WARP_SIZE)
    nx = math.ceil(ndm / nthread[0])
    ny = math.ceil(ntime / nthread[1])
    nblock = (nx, ny)

    output_gpu = np.empty((ndm, ntime), dtype=np.float32)
Esempio n. 8
0
                    top_accs[i] += 1
            str_format = '标签:%d - 类别名:%s - 概率值:%f'
            cls_name = train.batch_generator.cls_list[index]
            p = prob[index]
            print(str_format % (index, cls_name, p))

    print('--------------------------------------------------')
    print('以上为所有输入视频的预测标签、类别名和预测概率值')
    print('总视频数为:%d' % len(fname_or_list))
    print('视频总用时:%.3f' % delta)
    speed = delta / len(fname_or_list)
    print('识别平均速度为:%.3f sec/视频' % speed)

    if is_all_test_set:
        print('++++++++++++++++++++++++++++++++++++++++++++++++++')
        print('当前使用所有测试集作为演示,可计算准确率,准确率如下:')
        for i in range(0, len(top_accs), 2):
            print('Top-%d准确率为:%.4f' % (i+1, top_accs[i] / len(fname_or_list)))
    train.close()

if __name__ == '__main__':
    fname_or_list = sys.argv[1:]
    with timer('恢复模型和参数'):
        train = trainer(is_recog=True)
        if len(fname_or_list) == 0:
            print('没有指定视频,使用所有测试集作为演示')
            fname_or_list = train.batch_generator.test_fname_list
        train.saver.restore(train.sess, train.model_fname)
    recog(fname_or_list, train=train)

Esempio n. 9
0
def main(restore=True):
    with tools.timer('build model'):
        train = trainer()
    with tools.timer('train'):
        train.train(restore=restore)
    train.close()