Esempio n. 1
0
def save_constraint_analysis(cfp_m,
                             utility,
                             delta_util_x,
                             delta_cons=0.01,
                             prefix=None):
    from tools import write_columns_csv
    utility_given_delta_con = utility.adjusted_utility(
        cfp_m, first_period_consadj=delta_cons)
    delta_util_c = utility_given_delta_con - utility.utility(cfp_m)
    delta_con = find_bec(cfp_m, utility, delta_util_x)
    marginal_benefit = (delta_util_x / delta_util_c
                        ) * delta_con * utility.cost.cons_per_ton / delta_cons
    delta_cons_billions = delta_con * utility.cost.cons_per_ton * utility.damage.bau.emit_level[
        0]
    delta_emission_gton = delta_cons * utility.damage.bau.emit_level[0]
    deadweight = delta_con * utility.cost.cons_per_ton / delta_cons
    if prefix is not None:
        prefix += "_"
    else:
        prefix = ""
    write_columns_csv([
        delta_util_x, delta_util_c, [delta_con], marginal_benefit,
        [delta_cons_billions], [delta_emission_gton], [deadweight]
    ],
                      prefix + "constraint_output",
                      header=[
                          "Delta Utility Mitigation",
                          "Delta Utility Consumption", "Delta Consumption",
                          "Marginal Benefit", "Delta Consumption Billions",
                          "Delta Emission GTon", "Deadweight"
                      ])
    def write_columns(self, file_name, header, start_year=2015, delimiter=";"):
        """Save values in `tree` as columns into file  `file_name` in the
		'data' directory in the current working directory. If there is no 'data'
		directory, one is created.

		+------------+------------+-----------+
		|    Year    |    Node 	  |  header   |
		+============+============+===========+
		| start_year |     0	  |   val0    |
		+------------+------------+-----------+
		|     ..     |	   .. 	  |    ..     |
		+------------+------------+-----------+

		Parameters
		----------
		file_name : str
			name of saved file
		header : str
			description of values in tree
		start_year : int, optional
			start year of analysis
		delimiter : str, optional
			delimiter in file

		"""
        from tools import write_columns_csv, file_exists
        if file_exists(file_name):
            self.write_columns_existing(file_name, header)
        else:
            real_times = self.decision_times[:-1]
            years = []
            nodes = []
            output_lst = []
            k = 0
            for t in real_times:
                for n in range(len(self.tree[t])):
                    years.append(t + start_year)
                    nodes.append(k)
                    output_lst.append(self.tree[t][n])
                    k += 1
            write_columns_csv(lst=[output_lst],
                              file_name=file_name,
                              header=["Year", "Node", header],
                              index=[years, nodes],
                              delimiter=delimiter)
Esempio n. 3
0
    def write_columns(self, file_name, header, start_year):
        from tools import write_columns_csv, file_exists
        if file_exists(file_name):
            self.write_columns_existing(file_name, header)
        else:
            real_times = self.decision_times[:-1]
            years = []
            nodes = []
            output_lst = []
            k = 0
            for t in real_times:
                for n in range(len(self.tree[t])):
                    years.append(t + start_year)
                    nodes.append(k)
                    output_lst.append(self.tree[t][n])
                    k += 1

            write_columns_csv([output_lst], file_name,
                              ["Year", "Node", header], [years, nodes])
Esempio n. 4
0
def save_sensitivity_analysis(m,
                              utility,
                              utility_tree,
                              cons_tree,
                              cost_tree,
                              ce_tree,
                              prefix=None,
                              return_delta_utility=False):
    """Calculate and save sensitivity analysis based on the optimal mitigation. For every sub-period, i.e. the 
	periods given by the utility calculations, the function calculates and saves:
		
		* discount prices
		* net expected damages
		* expected damages
		* risk premium
		* expected SDF
		* cross SDF & damages
		* discounted expected damages
		* cov term
		* scaled net expected damages
		* scaled risk premiums
	
	into the file  `prefix` + 'sensitivity_output' in the 'data' directory in the current working directory. 

	Furthermore, for every node the function calculates and saves:
	
		* SDF 
		* delta consumption
		* forward marginal utility  
		* up-node marginal utility
		* down-node marginal utility
	
	into the file `prefix` + 'tree' in the 'data' directory in the current working directory. If there is no 'data' 
	directory, one is created. 

	Parameters
	----------
	m : ndarray or list
		array of mitigation
	utility : `Utility` object
		object of utility class
	utility_tree : `BigStorageTree` object
		utility values from optimal mitigation values
	cons_tree : `BigStorageTree` object
		consumption values from optimal mitigation values
	cost_tree : `SmallStorageTree` object
		cost values from optimal mitigation values
	ce_tree : `BigStorageTree` object
		certain equivalence values from optimal mitigation values
	prefix : str, optional
		prefix to be added to file_name

	"""
    from tools import write_columns_csv, append_to_existing

    sdf_tree = BigStorageTree(utility.period_len, utility.decision_times)
    sdf_tree.set_value(0, np.array([1.0]))

    discount_prices = np.zeros(len(sdf_tree))
    net_expected_damages = np.zeros(len(sdf_tree))
    expected_damages = np.zeros(len(sdf_tree))
    risk_premiums = np.zeros(len(sdf_tree))
    expected_sdf = np.zeros(len(sdf_tree))
    cross_sdf_damages = np.zeros(len(sdf_tree))
    discounted_expected_damages = np.zeros(len(sdf_tree))
    net_discount_damages = np.zeros(len(sdf_tree))
    cov_term = np.zeros(len(sdf_tree))

    discount_prices[0] = 1.0
    cost_sum = 0

    end_price = find_term_structure(m, utility, 0.01)
    perp_yield = perpetuity_yield(end_price, sdf_tree.periods[-2])

    delta_cons_tree, delta_cost_array, delta_utility = delta_consumption(
        m, utility, cons_tree, cost_tree, 0.01)
    mu_0, mu_1, mu_2 = utility.marginal_utility(m, utility_tree, cons_tree,
                                                cost_tree, ce_tree)
    sub_len = sdf_tree.subinterval_len
    i = 1
    for period in sdf_tree.periods[1:]:
        node_period = sdf_tree.decision_interval(period)
        period_probs = utility.tree.get_probs_in_period(node_period)
        expected_damage = np.dot(delta_cons_tree[period], period_probs)
        expected_damages[i] = expected_damage

        if sdf_tree.is_information_period(period - sdf_tree.subinterval_len):
            total_probs = period_probs[::2] + period_probs[1::2]
            mu_temp = np.zeros(2 * len(mu_1[period - sub_len]))
            mu_temp[::2] = mu_1[period - sub_len]
            mu_temp[1::2] = mu_2[period - sub_len]
            sdf = (np.repeat(total_probs, 2) / period_probs) * (
                mu_temp / np.repeat(mu_0[period - sub_len], 2))
            period_sdf = np.repeat(sdf_tree.tree[period - sub_len], 2) * sdf
        else:
            sdf = mu_1[period - sub_len] / mu_0[period - sub_len]
            period_sdf = sdf_tree[period - sub_len] * sdf

        expected_sdf[i] = np.dot(period_sdf, period_probs)
        cross_sdf_damages[i] = np.dot(period_sdf,
                                      delta_cons_tree[period] * period_probs)
        cov_term[i] = cross_sdf_damages[i] - expected_sdf[i] * expected_damage

        discount_prices[i] = expected_sdf[i]
        sdf_tree.set_value(period, period_sdf)

        if i < len(delta_cost_array):
            net_discount_damages[i] = -(expected_damage + delta_cost_array[
                i, 1]) * expected_sdf[i] / delta_cons_tree[0]
            cost_sum += -delta_cost_array[
                i, 1] * expected_sdf[i] / delta_cons_tree[0]
        else:
            net_discount_damages[
                i] = -expected_damage * expected_sdf[i] / delta_cons_tree[0]

        risk_premiums[i] = -cov_term[i] / delta_cons_tree[0]
        discounted_expected_damages[
            i] = -expected_damage * expected_sdf[i] / delta_cons_tree[0]
        i += 1

    damage_scale = utility.cost.price(
        0, m[0], 0) / (net_discount_damages.sum() + risk_premiums.sum())
    scaled_discounted_ed = net_discount_damages * damage_scale
    scaled_risk_premiums = risk_premiums * damage_scale

    if prefix is not None:
        prefix += "_"
    else:
        prefix = ""

    write_columns_csv([
        discount_prices, net_discount_damages, expected_damages, risk_premiums,
        expected_sdf, cross_sdf_damages, discounted_expected_damages, cov_term,
        scaled_discounted_ed, scaled_risk_premiums
    ], prefix + "sensitivity_output", [
        "Year", "Discount Prices", "Net Expected Damages", "Expected Damages",
        "Risk Premium", "Expected SDF", "Cross SDF & Damages",
        "Discounted Expected Damages", "Cov Term",
        "Scaled Net Expected Damages", "Scaled Risk Premiums"
    ], [sdf_tree.periods.astype(int) + 2015])

    append_to_existing(
        [[end_price], [perp_yield], [scaled_discounted_ed.sum()],
         [scaled_risk_premiums.sum()], [utility.cost.price(0, m[0], 0)],
         cost_sum],
        prefix + "sensitivity_output",
        header=[
            "Zero Bound Price", "Perp Yield", "Expected Damages",
            "Risk Premium", "SCC", "Sum Delta Cost"
        ],
        start_char='\n')

    store_trees(prefix=prefix,
                SDF=sdf_tree,
                DeltaConsumption=delta_cons_tree,
                MU_0=mu_0,
                MU_1=mu_1,
                MU_2=mu_2)

    if return_delta_utility:
        return delta_utility
Esempio n. 5
0
def save_output(m,
                utility,
                utility_tree,
                cons_tree,
                cost_tree,
                ce_tree,
                prefix=None):
    """Save the result of optimization and calculated values based on optimal mitigation. For every node the 
	function calculates and saves:
		
		* average mitigation
		* average emission
		* GHG level 
		* SCC 

	into the file `prefix` + 'node_period_output' in the 'data' directory in the current working directory. 

	For every period the function calculates and appends:
		
		* expected SCC/price
		* expected mitigation 
		* expected emission 
	
	into the file  `prefix` + 'node_period_output' in the 'data' directory in the current working directory. 

	The function also saves the values stored in the `BaseStorageTree` object parameters to a file called 
	`prefix` + 'tree' in the 'data' directory in the current working directory. If there is no 'data' 
	directory, one is created. 

	Parameters
	----------
	m : ndarray or list
		array of mitigation
	utility : `Utility` object
		object of utility class
	utility_tree : `BigStorageTree` object
		utility values from optimal mitigation values
	cons_tree : `BigStorageTree` object
		consumption values from optimal mitigation values
	cost_tree : `SmallStorageTree` object
		cost values from optimal mitigation values
	ce_tree : `BigStorageTree` object
		certain equivalence values from optimal mitigation values
	prefix : str, optional
		prefix to be added to file_name

	"""
    from tools import write_columns_csv, append_to_existing
    bau = utility.damage.bau
    tree = utility.tree
    periods = tree.num_periods
    prices = np.zeros(len(m))
    ave_mitigations = np.zeros(len(m))
    ave_emissions = np.zeros(len(m))
    expected_period_price = np.zeros(periods)
    expected_period_mitigation = np.zeros(periods)
    expected_period_emissions = np.zeros(periods)
    additional_emissions = additional_ghg_emission(m, utility)
    ghg_levels = utility.damage.ghg_level(m)

    periods = tree.num_periods
    for period in range(0, periods):
        years = tree.decision_times[period]
        period_years = tree.decision_times[period +
                                           1] - tree.decision_times[period]
        nodes = tree.get_nodes_in_period(period)
        num_nodes_period = 1 + nodes[1] - nodes[0]
        period_lens = tree.decision_times[:period + 1]
        for node in range(nodes[0], nodes[1] + 1):
            path = np.array(tree.get_path(node, period))
            new_m = m[path]
            mean_mitigation = np.dot(new_m, period_lens) / years
            price = utility.cost.price(years, m[node], mean_mitigation)
            prices[node] = price
            ave_mitigations[node] = utility.damage.average_mitigation_node(
                m, node, period)
            ave_emissions[node] = additional_emissions[node] / (
                period_years * bau.emission_to_bau)
        probs = tree.get_probs_in_period(period)
        expected_period_price[period] = np.dot(prices[nodes[0]:nodes[1] + 1],
                                               probs)
        expected_period_mitigation[period] = np.dot(
            ave_mitigations[nodes[0]:nodes[1] + 1], probs)
        expected_period_emissions[period] = np.dot(
            ave_emissions[nodes[0]:nodes[1] + 1], probs)

    if prefix is not None:
        prefix += "_"
    else:
        prefix = ""

    write_columns_csv([m, prices, ave_mitigations, ave_emissions, ghg_levels],
                      prefix + "node_period_output", [
                          "Node", "Mitigation", "Prices", "Average Mitigation",
                          "Average Emission", "GHG Level"
                      ], [range(len(m))])

    append_to_existing([
        expected_period_price, expected_period_mitigation,
        expected_period_emissions
    ],
                       prefix + "node_period_output",
                       header=[
                           "Period", "Expected Price", "Expected Mitigation",
                           "Expected Emission"
                       ],
                       index=[range(periods)],
                       start_char='\n')

    store_trees(prefix=prefix,
                Utility=utility_tree,
                Consumption=cons_tree,
                Cost=cost_tree,
                CertainEquivalence=ce_tree)
Esempio n. 6
0
def save_sensitivity_analysis(m, utility, utility_tree, cons_tree, cost_tree,
                              ce_tree, new_cons_tree, cost_array,
                              start_filename):
    """ create_output in dlw_optimization. Maybe we only want to use gradient desecent here"""
    from tools import write_columns_csv

    sdf_tree = BigStorageTree(utility.period_len, utility.decision_times)
    sdf_tree.set_value(0, np.array([1.0]))

    discount_prices = np.zeros(len(sdf_tree))
    net_expected_damages = np.zeros(len(sdf_tree))
    expected_damages = np.zeros(len(sdf_tree))
    risk_premiums = np.zeros(len(sdf_tree))
    expected_sdf = np.zeros(len(sdf_tree))
    cross_sdf_damages = np.zeros(len(sdf_tree))
    discounted_expected_damages = np.zeros(len(sdf_tree))
    net_discount_damages = np.zeros(len(sdf_tree))
    cov_term = np.zeros(len(sdf_tree))

    discount_prices[0] = 1.0
    cost_sum = 0

    end_price = find_term_structure(m, utility, len(utility_tree), 0.01)
    perp_yield = perpetuity_yield(end_price, sdf_tree.periods[-2])
    print("Zero coupon bond maturing in {} has price {} and yield {}".format(
        sdf_tree.periods[-2], end_price, perp_yield))

    #grad = utility.numerical_gradient(m)
    #years_to_maturity = utility_tree.last_period - utility_tree.subinterval_len
    mu_0, mu_1, mu_2 = utility.marginal_utility(m, utility_tree, cons_tree,
                                                cost_tree, ce_tree)
    sub_len = sdf_tree.subinterval_len
    i = 1
    for period in sdf_tree.periods[1:]:
        node_period = sdf_tree.decision_interval(period)
        period_probs = utility.tree.get_probs_in_period(node_period)
        expected_damage = np.dot(new_cons_tree[period], period_probs)
        expected_damages[i] = expected_damage

        if sdf_tree.is_information_period(period - sdf_tree.subinterval_len):
            total_probs = period_probs[::2] + period_probs[1::2]
            mu_temp = np.zeros(2 * len(mu_1[period - sub_len]))
            mu_temp[::2] = mu_1[period - sub_len]
            mu_temp[1::2] = mu_2[period - sub_len]
            sdf = (np.repeat(total_probs, 2) / period_probs) * (
                mu_temp / np.repeat(mu_0[period - sub_len], 2))
            period_sdf = np.repeat(sdf_tree.tree[period - sub_len], 2) * sdf
        else:
            sdf = mu_1[period - sub_len] / mu_0[period - sub_len]
            period_sdf = sdf_tree[period - sub_len] * sdf

        expected_sdf[i] = np.dot(period_sdf, period_probs)
        cross_sdf_damages[i] = np.dot(period_sdf,
                                      new_cons_tree[period] * period_probs)
        cov_term[i] = cross_sdf_damages[i] - expected_sdf[i] * expected_damage

        discount_prices[i] = expected_sdf[i]
        sdf_tree.set_value(period, period_sdf)

        if i < len(cost_array):
            net_discount_damages[i] = -(expected_damage + cost_array[
                i, 1]) * expected_sdf[i] / new_cons_tree.tree[0]
            cost_sum += -cost_array[
                i, 1] * expected_sdf[i] / new_cons_tree.tree[0]
        else:
            net_discount_damages[
                i] = -expected_damage * expected_sdf[i] / new_cons_tree.tree[0]

        risk_premiums[i] = -cov_term[i] / new_cons_tree.tree[0]
        discounted_expected_damages[
            i] = -expected_damage * expected_sdf[i] / new_cons_tree.tree[0]
        i += 1

    damage_scale = utility.cost.price(
        0, m[0], 0) / (net_discount_damages.sum() + risk_premiums.sum())
    scaled_discounted_ed = net_discount_damages * damage_scale
    scaled_risk_premiums = risk_premiums * damage_scale

    write_columns_csv([
        discount_prices, net_discount_damages, expected_damages, risk_premiums,
        expected_sdf, cross_sdf_damages, discounted_expected_damages, cov_term,
        scaled_discounted_ed, scaled_risk_premiums
    ], start_filename + "sensitivity_output", [
        "Year", "Discount Prices", "Net Expected Damages", "Expected Damages",
        "Risk Premium", "Expected SDF", "Cross SDF & Damages",
        "Discounted Expected Damages", "Cov Term",
        "Scaled Net Expected Damages", "Scaled Risk Premiums"
    ], [sdf_tree.periods.astype(int) + 2015])

    store_trees(prefix=start_filename,
                SDF=sdf_tree,
                DeltaConsumption=new_cons_tree,
                MU_0=mu_0,
                MU_1=mu_1,
                MU_2=mu_2)
Esempio n. 7
0
def save_output(m,
                utility,
                utility_tree,
                cons_tree,
                cost_tree,
                ce_tree,
                delta_cons_analysis=True,
                constraint_first_period=True,
                directory=None,
                prefix=None):
    from tools import write_columns_csv, append_to_existing
    import os
    bau = utility.damage.bau
    tree = utility.tree
    periods = tree.num_periods
    prices = np.zeros(len(m))
    ave_mitigations = np.zeros(len(m))
    ave_emissions = np.zeros(len(m))
    expected_period_price = np.zeros(periods)
    expected_period_mitigation = np.zeros(periods)
    expected_period_emissions = np.zeros(periods)
    additional_emissions = additional_ghg_emission(m, utility)
    ghg_levels = ghg_level(utility, additional_emissions)

    periods = tree.num_periods
    for period in range(0, periods):
        years = tree.decision_times[period]
        nodes = tree.get_nodes_in_period(period)
        num_nodes_period = 1 + nodes[1] - nodes[0]
        period_lens = tree.decision_times[:period + 1]
        for node in range(nodes[0], nodes[1] + 1):
            path = np.array(tree.get_path(node, period))
            new_m = m[path]
            mean_mitigation = np.dot(new_m, period_lens) / years
            price = utility.cost.price(years, m[node], mean_mitigation)
            prices[node] = price
            ave_mitigations[node] = utility.damage.average_mitigation_node(
                m, node, period)
            ave_emissions[node] = additional_emissions[node] / (
                num_nodes_period * bau.emission_to_bau)
        probs = tree.get_probs_in_period(period)
        expected_period_price[period] = np.dot(prices[nodes[0]:nodes[1] + 1],
                                               probs)
        expected_period_mitigation[period] = np.dot(
            ave_mitigations[nodes[0]:nodes[1] + 1], probs)
        expected_period_emissions[period] = np.dot(
            ave_emissions[nodes[0]:nodes[1] + 1], probs)

    if directory is not None:
        start_filename = directory + os.path.sep
    else:
        start_filename = ""
    if prefix is not None:
        prefix += "_"
    else:
        prefix = ""

    write_columns_csv([prices, m, ave_mitigations, ave_emissions, ghg_levels],
                      start_filename + prefix + "node_period_output", [
                          "Node", "Mitigation", "Prices", "Average Mitigation",
                          "Average Emission", "GHG Level"
                      ], [range(len(m))])

    append_to_existing([
        expected_period_price, expected_period_mitigation,
        expected_period_emissions
    ],
                       start_filename + prefix + "node_period_output",
                       header=[
                           "Period", "Expected Price", "Expected Mitigation",
                           "Expected Emission"
                       ],
                       index=[range(periods)])

    store_trees(prefix=start_filename + prefix,
                Utility=utility_tree,
                Consumption=cons_tree,
                Cost=cost_tree,
                CertainEquivalence=ce_tree)
 def _write_to_file(self):
     filename = "simulated_damages"
     write_columns_csv(self.d[0].T, filename)
     for arr in self.d[1:]:
         append_to_existing(arr.T, filename, start_char='#')