Esempio n. 1
0
def doPerformanceStudyOnMCOnly(inputFiles,
                               histogramForEstimation=defaultHistogram,
                               function='expo',
                               fitRanges=[(0.2, 1.6), (0.3, 1.6), (0.4, 1.6)]):
    if DEBUG:
        print '*' * 120
        print "Estimating QCD using a fit to RelIso"
        print 'Histogram = ', histogramForEstimation
        print 'Fit functions = ', function
        print 'Fit ranges = ', fitRanges
        print '*' * 120
    #get histograms
    histograms = FileReader.getHistogramDictionary(histogramForEstimation,
                                                   inputFiles)
    global allMC, qcd

    histograms['SumMC'] = plotting.sumSamples(histograms, allMC)

    histograms['QCD'] = plotting.sumSamples(histograms, qcd)

    #    qcdInSignalRegion = histograms['QCD'].Integral()
    #    qcdError = 0
    #    if not qcdInSignalRegion == 0:
    #        qcdError = qcdInSignalRegion / sqrt(qcdInSignalRegion)
    import copy
    results = {}
    qcdInSignalRegion, qcdError = getIntegral(histograms['QCD'], (0, 0.1))
    #        getRelIsoCalibrationCurve(inputFiles, histogramForEstimation, function, fitRanges)
    for fitRange in fitRanges:
        #take all other fit ranges as systematics
        fitRangesForSystematics = copy.deepcopy(fitRanges)
        fitRangesForSystematics.remove(fitRange)
        #instead of data use sum MC
        resultFromMethod = relIsoMethodWithSystematics(
            histograms['SumMC'], function, fitRange, fitRangesForSystematics,
            False)
        estimate, absoluteError = resultFromMethod[
            'estimate'], resultFromMethod['absoluteError']
        N_est = ufloat((estimate, absoluteError))
        N_qcd = ufloat((qcdInSignalRegion, qcdError))
        relativeDeviation = N_est / N_qcd

        result = {}
        result['performance'] = (relativeDeviation.nominal_value,
                                 relativeDeviation.std_dev())
        result['estimate'] = (estimate, absoluteError)
        result['qcdInSignalRegion'] = (qcdInSignalRegion, qcdError)
        result['fitfunction'] = function
        result['fitRange'] = fitRange
        result['fitRangesForSystematics'] = fitRangesForSystematics
        result['fit'] = resultFromMethod['fit']
        results[str(fitRange)] = result
    return results
def doPerformanceStudyOnMCOnly(inputFiles,
                               histogramForEstimation=defaultHistogram,
                               function='expo',
                   fitRanges=[(0.2, 1.6), (0.3, 1.6), (0.4, 1.6)]):
    if DEBUG:
        print '*' * 120
        print "Estimating QCD using a fit to RelIso"
        print 'Histogram = ', histogramForEstimation
        print 'Fit functions = ', function
        print 'Fit ranges = ', fitRanges
        print '*' * 120
    #get histograms
    histograms = FileReader.getHistogramDictionary(histogramForEstimation, inputFiles)
    global allMC, qcd
    
    histograms['SumMC'] = plotting.sumSamples(histograms, allMC)
    
    histograms['QCD'] = plotting.sumSamples(histograms, qcd)
    
#    qcdInSignalRegion = histograms['QCD'].Integral()
#    qcdError = 0
#    if not qcdInSignalRegion == 0:
#        qcdError = qcdInSignalRegion / sqrt(qcdInSignalRegion) 
    import copy
    results = {}
    qcdInSignalRegion, qcdError = getIntegral(histograms['QCD'], (0, 0.1))
#        getRelIsoCalibrationCurve(inputFiles, histogramForEstimation, function, fitRanges)
    for fitRange in fitRanges:
        #take all other fit ranges as systematics
        fitRangesForSystematics = copy.deepcopy(fitRanges)
        fitRangesForSystematics.remove(fitRange)
        #instead of data use sum MC
        resultFromMethod = relIsoMethodWithSystematics(histograms['SumMC'], function, fitRange, fitRangesForSystematics, False)
        estimate, absoluteError = resultFromMethod['estimate'], resultFromMethod['absoluteError']
        N_est = ufloat((estimate, absoluteError))
        N_qcd = ufloat((qcdInSignalRegion, qcdError))
        relativeDeviation = N_est / N_qcd

        result = {}
        result['performance'] = (relativeDeviation.nominal_value, relativeDeviation.std_dev())
        result['estimate'] = (estimate, absoluteError)
        result['qcdInSignalRegion'] = (qcdInSignalRegion, qcdError)
        result['fitfunction'] = function
        result['fitRange'] = fitRange
        result['fitRangesForSystematics'] = fitRangesForSystematics
        result['fit'] = resultFromMethod['fit']
        results[str(fitRange)] = result
    return results
def getStuff(histogramForEstimation, inputFiles):
    histograms = FileReader.getHistogramDictionary(histogramForEstimation, inputFiles)
    global allMC, qcd
    
    histograms['SumMC'] = plotting.sumSamples(histograms, allMC)
    
    histograms['QCD'] = plotting.sumSamples(histograms, qcd)
    qcdInSignalRegion, qcdError = getIntegral(histograms['QCD'], (0, 0.1))
    data, dataError = getIntegral(histograms['SingleElectron'], (0, 0.1))
    sumMC, sumMCError = getIntegral(histograms['SumMC'], (0, 0.1))
    result = {
              'N_data': data,
              'N_QCD': qcdInSignalRegion,
              'N_QCD_Error': qcdError,
              'N_SumMC': sumMC
              }
    return result
Esempio n. 4
0
def getStuff(histogramForEstimation, inputFiles):
    histograms = FileReader.getHistogramDictionary(histogramForEstimation,
                                                   inputFiles)
    global allMC, qcd

    histograms['SumMC'] = plotting.sumSamples(histograms, allMC)

    histograms['QCD'] = plotting.sumSamples(histograms, qcd)
    qcdInSignalRegion, qcdError = getIntegral(histograms['QCD'], (0, 0.1))
    data, dataError = getIntegral(histograms['SingleElectron'], (0, 0.1))
    sumMC, sumMCError = getIntegral(histograms['SumMC'], (0, 0.1))
    result = {
        'N_data': data,
        'N_QCD': qcdInSignalRegion,
        'N_QCD_Error': qcdError,
        'N_SumMC': sumMC
    }
    return result
                hist_type0.Draw()
                hist_sysshift.Draw('same')
                hist_sysshift_type0.Draw('same')
                hist_nominal.Draw('same')

                if variable == 'MET':
                    hist_nominal.SetAxisRange(0, 300, "X")
                    hist_sysshift.SetAxisRange(0, 300, "X")
                    hist_type0.SetAxisRange(0, 300, "X")
                    hist_sysshift_type0.SetAxisRange(0, 300, "X")

                    hist_type0.Draw()
                    hist_sysshift.Draw('same')
                    hist_sysshift_type0.Draw('same')
                    hist_nominal.Draw('same')

                legend = plotting.create_legend(x0=0.72,
                                                y0=0.90,
                                                x1=0.84,
                                                y1=0.75)
                legend.SetTextSize(0.03)
                legend.AddEntry(hist_nominal, 't#bar{t} nominal', 'l')
                legend.AddEntry(hist_sysshift, 't#bar{t} sys_shift', 'l')
                legend.AddEntry(hist_type0, 't#bar{t} type0', 'l')
                legend.AddEntry(hist_sysshift_type0,
                                't#bar{t} sys_shift+type0', 'l')
                legend.Draw()

                canvas.SaveAs(output_path + met + "_" + variable + "_" +
                              bjet_bin + ".pdf")
Esempio n. 6
0
def printCutFlow(hist, analysis, outputFormat='Latex'):
    scale_ttbar = 164.4 / 157.5
    used_data = 'ElectronHad'
    lepton = 'Electron/electron'
    if 'Mu' in analysis:
        used_data = 'SingleMu'
        lepton = 'Muon/muon'
    hist_1mBtag = 'TTbarPlusMetAnalysis/' + analysis + '/Ref selection/' + lepton + '_AbsEta_1orMoreBtag'
    hist_2mBtag = 'TTbarPlusMetAnalysis/' + analysis + '/Ref selection/' + lepton + '_AbsEta_2orMoreBtags'
    hist_names = [
        hist,  #due to b-tag scale factors these are not as simple any more
        hist_1mBtag,
        hist_2mBtag
    ]
    inputfiles = {}
    for sample in FILES.samplesToLoad:
        inputfiles[sample] = FILES.files[sample]
    hists = FileReader.getHistogramsFromFiles(hist_names, inputfiles)
    for sample in hists.keys():
        for histname in hists[sample].keys():
            hists[sample][histname].Sumw2()
    if analysis == 'EPlusJets':
        hists['QCD'] = plotting.sumSamples(hists, plotting.qcd_samples)
    else:
        hists['QCD'] = hists['QCD_Pt-20_MuEnrichedPt-15']

    hists['SingleTop'] = plotting.sumSamples(hists, plotting.singleTop_samples)
    hists['Di-Boson'] = plotting.sumSamples(hists, plotting.diboson_samples)
    hists['W+Jets'] = plotting.sumSamples(hists, plotting.wplusjets_samples)
    #    hists['SumMC'] = plotting.sumSamples(hists, plotting.allMC_samples)

    header = "| Step | TTJet | W+jets | DY + Jets | single top | Di-boson | QCD | Sum MC | Data |"
    row = " | %s  |  %d +- %d |  %d +- %d |  %d +- %d |  %d +- %d |  %d +- %d |  %d +- %d |  %d +- %d |  %d | "
    if outputFormat == 'Latex':
        header = "Selection step & \\ttbar & W + Jets & Z + Jets & Single-top & Di-boson & QCD~  & Sum MC & Data\\\\"
        row = " %s  &  $%d \pm %d$ &  $%d \pm %d$ &  $%d \pm %d$ &  $%d \pm %d$ &  $%d \pm %d$ &  $%d \pm %d$ &  $%d \pm %d$ &  %d \\\\ "
    print header

    numbers, errors = getEventNumbers(hists, hist, hist_1mBtag,
                                      hist_2mBtag)  # + '_0orMoreBtag')

    for step in range(len(cuts)):
        nums = numbers[step]
        errs = errors[step]
        nums['TTJet'] = nums['TTJet'] * scale_ttbar
        errs['TTJet'] = errs['TTJet'] * scale_ttbar
        if analysis == 'EPlusJets' and step >= len(
                cuts) - 3:  #have only estimates for >= 4 jet and beyond
            histForEstimation = 'TTbarPlusMetAnalysis/EPlusJets/QCD e+jets PFRelIso/Electron/electron_pfIsolation_03_0orMoreBtag'
            if step == len(cuts) - 2:
                histForEstimation = 'TTbarPlusMetAnalysis/EPlusJets/QCD e+jets PFRelIso/Electron/electron_pfIsolation_03_1orMoreBtag'
            if step == len(cuts) - 1:
                histForEstimation = 'TTbarPlusMetAnalysis/EPlusJets/QCD e+jets PFRelIso/Electron/electron_pfIsolation_03_2orMoreBtags'
            estimate = QCDRateEstimation.estimateQCDWithRelIso(
                FILES.files, histForEstimation)
            nums['QCD'], errs['QCD'] = estimate['estimate'], estimate[
                'absoluteError']
        if analysis == 'MuPlusJets' and step >= len(
                cuts) - 3:  #have only estimates for >= 4 jet and beyond
            scale = 1.21
            nums['QCD'], errs['QCD'] = nums['QCD'] * scale, errs['QCD'] * scale

        sumMC = nums['TTJet'] + nums['W+Jets'] + nums['DYJetsToLL'] + nums[
            'SingleTop'] + nums['QCD'] + nums['Di-Boson']
        sumMC_err = sqrt(errs['TTJet']**2 + errs['W+Jets']**2 +
                         errs['DYJetsToLL']**2 + errs['SingleTop']**2 +
                         errs['QCD']**2 + errs['Di-Boson']**2)
        print row % (cuts[step], nums['TTJet'], errs['TTJet'], nums['W+Jets'],
                     errs['W+Jets'], nums['DYJetsToLL'], errs['DYJetsToLL'],
                     nums['SingleTop'], errs['SingleTop'], nums['Di-Boson'],
                     errs['Di-Boson'], nums['QCD'], errs['QCD'], sumMC,
                     sumMC_err, nums[used_data])
def printCutFlow(hist, analysis, outputFormat="Latex"):
    scale_ttbar = 164.4 / 157.5
    used_data = "ElectronHad"
    lepton = "Electron/electron"
    if "Mu" in analysis:
        used_data = "SingleMu"
        lepton = "Muon/muon"
    hist_1mBtag = "TTbarPlusMetAnalysis/" + analysis + "/Ref selection/" + lepton + "_AbsEta_1orMoreBtag"
    hist_2mBtag = "TTbarPlusMetAnalysis/" + analysis + "/Ref selection/" + lepton + "_AbsEta_2orMoreBtags"
    hist_names = [hist, hist_1mBtag, hist_2mBtag]  # due to b-tag scale factors these are not as simple any more
    inputfiles = {}
    for sample in FILES.samplesToLoad:
        inputfiles[sample] = FILES.files[sample]
    hists = FileReader.getHistogramsFromFiles(hist_names, inputfiles)
    for sample in hists.keys():
        for histname in hists[sample].keys():
            hists[sample][histname].Sumw2()
    if analysis == "EPlusJets":
        hists["QCD"] = plotting.sumSamples(hists, plotting.qcd_samples)
    else:
        hists["QCD"] = hists["QCD_Pt-20_MuEnrichedPt-15"]

    hists["SingleTop"] = plotting.sumSamples(hists, plotting.singleTop_samples)
    hists["Di-Boson"] = plotting.sumSamples(hists, plotting.diboson_samples)
    hists["W+Jets"] = plotting.sumSamples(hists, plotting.wplusjets_samples)
    #    hists['SumMC'] = plotting.sumSamples(hists, plotting.allMC_samples)

    header = "| Step | TTJet | W+jets | DY + Jets | single top | Di-boson | QCD | Sum MC | Data |"
    row = " | %s  |  %d +- %d |  %d +- %d |  %d +- %d |  %d +- %d |  %d +- %d |  %d +- %d |  %d +- %d |  %d | "
    if outputFormat == "Latex":
        header = "Selection step & \\ttbar & W + Jets & Z + Jets & Single-top & Di-boson & QCD~  & Sum MC & Data\\\\"
        row = " %s  &  $%d \pm %d$ &  $%d \pm %d$ &  $%d \pm %d$ &  $%d \pm %d$ &  $%d \pm %d$ &  $%d \pm %d$ &  $%d \pm %d$ &  %d \\\\ "
    print header

    numbers, errors = getEventNumbers(hists, hist, hist_1mBtag, hist_2mBtag)  # + '_0orMoreBtag')

    for step in range(len(cuts)):
        nums = numbers[step]
        errs = errors[step]
        nums["TTJet"] = nums["TTJet"] * scale_ttbar
        errs["TTJet"] = errs["TTJet"] * scale_ttbar
        if analysis == "EPlusJets" and step >= len(cuts) - 3:  # have only estimates for >= 4 jet and beyond
            histForEstimation = (
                "TTbarPlusMetAnalysis/EPlusJets/QCD e+jets PFRelIso/Electron/electron_pfIsolation_03_0orMoreBtag"
            )
            if step == len(cuts) - 2:
                histForEstimation = (
                    "TTbarPlusMetAnalysis/EPlusJets/QCD e+jets PFRelIso/Electron/electron_pfIsolation_03_1orMoreBtag"
                )
            if step == len(cuts) - 1:
                histForEstimation = (
                    "TTbarPlusMetAnalysis/EPlusJets/QCD e+jets PFRelIso/Electron/electron_pfIsolation_03_2orMoreBtags"
                )
            estimate = QCDRateEstimation.estimateQCDWithRelIso(FILES.files, histForEstimation)
            nums["QCD"], errs["QCD"] = estimate["estimate"], estimate["absoluteError"]
        if analysis == "MuPlusJets" and step >= len(cuts) - 3:  # have only estimates for >= 4 jet and beyond
            scale = 1.21
            nums["QCD"], errs["QCD"] = nums["QCD"] * scale, errs["QCD"] * scale

        sumMC = nums["TTJet"] + nums["W+Jets"] + nums["DYJetsToLL"] + nums["SingleTop"] + nums["QCD"] + nums["Di-Boson"]
        sumMC_err = sqrt(
            errs["TTJet"] ** 2
            + errs["W+Jets"] ** 2
            + errs["DYJetsToLL"] ** 2
            + errs["SingleTop"] ** 2
            + errs["QCD"] ** 2
            + errs["Di-Boson"] ** 2
        )
        print row % (
            cuts[step],
            nums["TTJet"],
            errs["TTJet"],
            nums["W+Jets"],
            errs["W+Jets"],
            nums["DYJetsToLL"],
            errs["DYJetsToLL"],
            nums["SingleTop"],
            errs["SingleTop"],
            nums["Di-Boson"],
            errs["Di-Boson"],
            nums["QCD"],
            errs["QCD"],
            sumMC,
            sumMC_err,
            nums[used_data],
        )
Esempio n. 8
0
    "electron_dPhi_in": 'Events/(0.01)',
    "electron_dEta_in": 'Events/(0.001)',
    "electron_HadOverEM": 'Events/(0.01)',
    "electron_mvaTrigV0": 'Events/(0.05)',
    "electron_mvaNonTrigV0": 'Events/(0.05)',
    "electron_dB": 'Events/(0.001 cm)',
    'electron_sigma_ietaieta': 'Events/(0.001)'
}

histograms = [
    'HLTQCDAnalyser_inclusive/' + trigger + '/' + variable
    for variable in variables for trigger in triggers
]

hists = FileReader.getHistogramsFromFiles(histograms, files)
plotting.setStyle()
for variable in variables:
    hists = plotting.rebin(hists, rebins[variable], '*' + variable)
    hists = plotting.setXRange(hists,
                               limits=limits[variable],
                               histname='*' + variable)
    hists = plotting.setYTitle(hists,
                               title=titles[variable],
                               histname='*' + variable)

labels = [
    'CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT', 'CaloIdVT_CaloIsoVL_TrkIdVL_TrkIsoT',
    'CaloIdVL_CaloIsoT_TrkIdVL_TrkIsoT', 'CaloIdVT_TrkIdT'
]

styles = [
        
        hist_madgraph.Sumw2()
        hist_mcatnlo.Sumw2()
        hist_powheg.Sumw2()
        hist_pythia.Sumw2()
        
        hist_madgraph.Scale(1/hist_madgraph.Integral())
        hist_mcatnlo.Scale(1/hist_mcatnlo.Integral())
        hist_powheg.Scale(1/hist_powheg.Integral())
        hist_pythia.Scale(1/hist_pythia.Integral())
        
        hist_madgraph.Draw("E1")
        hist_mcatnlo.Draw('E1 same')
        hist_powheg.Draw('E1 same')
        hist_pythia.Draw('E1 same')
        
        if variable == 'MET_phi':
            legend = plotting.create_legend(x0=0.72, y0 = 0.90, x1=0.84, y1=0.80)
        elif variable == 'deltaPhi_2bjets':
            legend = plotting.create_legend(x0=0.42, y0 = 0.90, x1=0.54, y1=0.80)
        else:
            legend = plotting.create_legend(x0=0.72, y0 = 0.90, x1=0.84, y1=0.75)
        legend.SetTextSize(0.03)
        legend.AddEntry(hist_madgraph, 't#bar{t} (MADGRAPH)', 'l')
        legend.AddEntry(hist_mcatnlo, 't#bar{t} (MC@NLO)', 'l')
        legend.AddEntry(hist_powheg, 't#bar{t} (POWHEG)', 'l')
        legend.AddEntry(hist_pythia, 't#bar{t} (PYTHIA6)', 'l')
        legend.Draw()
        
        canvas.SaveAs(output_path+variable + ".pdf")
    "electron_pfIsolation_03_0orMoreBtag": "Events/(0.05)",
    "electron_pfIsolation_04_0orMoreBtag": "Events/(0.05)",
    "electron_pfIsolation_05_0orMoreBtag": "Events/(0.05)",
    "electron_dPhi_in": "Events/(0.01)",
    "electron_dEta_in": "Events/(0.001)",
    "electron_HadOverEM": "Events/(0.01)",
    "electron_mvaTrigV0": "Events/(0.05)",
    "electron_mvaNonTrigV0": "Events/(0.05)",
    "electron_dB": "Events/(0.001 cm)",
    "electron_sigma_ietaieta": "Events/(0.001)",
}

histograms = ["HLTQCDAnalyser_inclusive/" + trigger + "/" + variable for variable in variables for trigger in triggers]

hists = FileReader.getHistogramsFromFiles(histograms, files)
plotting.setStyle()
for variable in variables:
    hists = plotting.rebin(hists, rebins[variable], "*" + variable)
    hists = plotting.setXRange(hists, limits=limits[variable], histname="*" + variable)
    hists = plotting.setYTitle(hists, title=titles[variable], histname="*" + variable)

labels = [
    "CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT",
    "CaloIdVT_CaloIsoVL_TrkIdVL_TrkIsoT",
    "CaloIdVL_CaloIsoT_TrkIdVL_TrkIsoT",
    "CaloIdVT_TrkIdT",
]

styles = [
    {"color": kBlack, "fill": 1001},
    {"color": kRed, "fill": 3004},