Esempio n. 1
0
 def from_json_data(cls, json_data: dict) -> 'RescaleTreatment':
     return cls(json_data["UseOnWindow"],
                Window.from_json_data(json_data["Window"]),
                json_data["UseOnBaseline"],
                Window.from_json_data(json_data["Baseline"]),
                json_data['BeforeMin'], json_data['BeforeMax'],
                json_data['AfterMin'], json_data['AfterMax'],
                json_data["Order"], json_data["ID"])
Esempio n. 2
0
 def from_json_data(cls, json_data: dict) -> 'ClampTreatment':
     return cls(json_data["UseOnWindow"],
                Window.from_json_data(json_data["Window"]),
                json_data["UseOnBaseline"],
                Window.from_json_data(json_data["Baseline"]),
                json_data['UseMinClamp'], json_data['Min'],
                json_data['UseMaxClamp'], json_data['Max'],
                json_data["Order"], json_data["ID"])
Esempio n. 3
0
 def from_json_data(cls, json_data: dict) -> 'SubBloc':
     return cls(
         json_data["Name"], json_data["Order"],
         SubBlocType(json_data["Type"]),
         Window.from_json_data(json_data["Window"]),
         Window.from_json_data(json_data["Baseline"]),
         [Event.from_json_data(event) for event in json_data["Events"]],
         [Icon.from_json_data(icon) for icon in json_data["Icons"]], [
             Treatment.from_json_data(treatment)
             for treatment in json_data["Treatments"]
         ], json_data["ID"])
Esempio n. 4
0
 def __init__(self,
              use_on_window: bool = True,
              window: Window = None,
              use_on_baseline: bool = True,
              baseline: Window = None,
              order: int = 0,
              ID: str = ""):
     super().__init__(ID)
     self.use_on_window = use_on_window
     self.window = window if window is not None else Window()
     self.use_on_baseline = use_on_baseline
     self.baseline = baseline if baseline is not None else Window()
     self.order = order
Esempio n. 5
0
    def __init__(self, net, nid, ifc):
        super().__init__(net, nid, ifc)
        self.D = np.zeros((const.FEATURES + 1, const.FEATURES + 1))
        self.d = np.zeros((const.FEATURES + 1, 1))
        self.A = np.zeros((const.FEATURES + 1, const.FEATURES + 1))
        self.c = np.zeros((const.FEATURES + 1, 1))
        self.A_last = np.zeros((const.FEATURES + 1, const.FEATURES + 1))
        self.c_last = np.zeros((const.FEATURES + 1, 1))

        self.A_global = None
        self.w_global = None
        self.win = Window(size=const.SIZE,
                          step=const.STEP,
                          points=const.TRAIN_POINTS)
        self.warmup = True
Esempio n. 6
0
    def __init__(self, net, nid, ifc):
        super().__init__(net, nid, ifc)
        self.warmup = True
        self.A = np.zeros((const.FEATURES + 1, const.FEATURES + 1))
        self.c = np.zeros((const.FEATURES + 1, 1))
        self.S = np.zeros((const.FEATURES + 1, 1))
        self.E = np.zeros((const.FEATURES + 1, 1))
        self.X = np.zeros((const.FEATURES + 1, 1))
        self.E_global = None
        self.zeta = 0
        self.theta = 0
        self.counter = 0
        self.increment = 0

        self.win = Window(size=const.SIZE,
                          step=const.STEP,
                          points=const.TRAIN_POINTS)
Esempio n. 7
0
 def __init__(self,
              name: str = "",
              image_path: str = "",
              window: Window = None,
              ID: str = ""):
     super().__init__(ID)
     self.name = name
     self.image_path = image_path
     self.window = window if window is not None else Window()
Esempio n. 8
0
 def __init__(self,
              name: str = "",
              order: int = 0,
              subBloc_type: SubBlocType = 0,
              window: Window = None,
              baseline: Window = None,
              events: List[Event] = None,
              icons: List[Icon] = None,
              treatments: List[Treatment] = None,
              ID: str = ""):
     super().__init__(ID)
     self.name = name
     self.order = order
     self.subBloc_type = subBloc_type
     self.window = window if window is not None else Window()
     self.baseline = baseline if baseline is not None else Window()
     self.events = events if events is not None else []
     self.icons = icons if icons is not None else []
     self.treatments = treatments if treatments is not None else []
Esempio n. 9
0
    def __init__(self, net, nid, ifc):
        super().__init__(net, nid, ifc)
        self.X = A_zero
        self.x = c_zero
        self.A = A_zero
        self.c = c_zero
        self.A_last = A_zero
        self.c_last = c_zero

        self.A_global = A_zero
        self.E_global = None

        self.zeta = 0
        self.theta = 0
        self.counter = 0
        self.increment = 0

        self.win = Window(size=const.SIZE,
                          step=const.STEP,
                          points=const.TRAIN_POINTS)
        self.warmup = True
Esempio n. 10
0
class Site(Sender):
    def __init__(self, net, nid, ifc):
        super().__init__(net, nid, ifc)
        self.X = A_zero
        self.x = c_zero
        self.A = A_zero
        self.c = c_zero
        self.A_last = A_zero
        self.c_last = c_zero

        self.A_global = A_zero
        self.E_global = None

        self.zeta = 0
        self.theta = 0
        self.counter = 0
        self.increment = 0

        self.win = Window(size=const.SIZE,
                          step=const.STEP,
                          points=const.TRAIN_POINTS)
        self.warmup = True

    def new_stream(self, stream):
        try:
            res = self.win.update(stream)
            new, old = next(res)

            self.update_state(new, old)

            if self.warmup is True:
                if not const.TEST:
                    self.send("warm_up", (self.A, self.c))
                if self.E_global is not None:
                    self.warmup = False

                    self.A_last = np.copy(self.A)
                    self.c_last = np.copy(self.c)
            else:
                self.update_drift()
                self.subround_process()

        except StopIteration:
            log.exception("Window has failed.")  # pragma: no cover

    def update_state(self, new, old):
        for x, y in new:
            x = x.reshape(-1, 1)
            ml1 = x.dot(x.T)
            self.A = np.add(self.A, ml1)
            ml2 = x.dot(y)
            self.c = np.add(self.c, ml2)

        for x, y in old:
            x = x.reshape(-1, 1)
            ml1 = x.dot(x.T)
            self.A = np.subtract(self.A, ml1)
            ml2 = x.dot(y)
            self.c = np.subtract(self.c, ml2)

    def update_drift(self):
        self.X = np.subtract(self.A, self.A_last)
        self.x = np.subtract(self.c, self.c_last)

    def subround_process(self):
        # log.info(f"START process for: {self.nid}")
        # log.info(f"phi: {(phi(self.X, self.x, self.A_global, self.E_global))}")
        # log.info(f"zeta: {self.zeta}")
        # log.info(f"theta: {self.theta}")

        current_counter = np.floor(
            (phi(self.X, self.x, self.A_global, self.E_global) - self.zeta) /
            self.theta)

        # log.info(f"new counter: {current_counter}")
        # log.info(f"END process for: {self.nid}")
        if current_counter > self.counter:
            self.increment = current_counter - self.counter
            self.counter = current_counter

            if not const.TEST:
                self.send("handle_increment", self.increment)

    # -------------------------------------------------------------------------
    # REMOTE METHOD
    def begin_round(self, msg):
        A_global, E_global = msg
        self.E_global = np.copy(E_global)
        self.A_global = np.copy(A_global)

        self.counter = 0
        self.zeta = phi(self.X, self.x, self.A_global,
                        self.E_global)  # phi(0, 0, A_global, E_global)
        log.info(f"initial local zeta = {self.zeta}")
        psi = const.K * self.zeta
        self.theta = -psi / (2 * const.K)

    def begin_subround(self, theta):
        self.counter = 0
        self.theta = theta
        log.info(f" (sub) initial local zeta = {self.zeta}")
        self.zeta = phi(self.X, self.x, self.A_global,
                        self.E_global)  # phi(X, x, A_global, E_global)

    def send_zeta(self):
        if not const.TEST:
            log.info(
                f"current zeta = {phi(self.X, self.x, self.A_global, self.E_global)}"
            )
            self.send("handle_zetas",
                      phi(self.X, self.x, self.A_global, self.E_global))

    def send_drift(self):
        self.A_last = np.copy(self.A)
        self.c_last = np.copy(self.c)

        self.X = A_zero
        self.x = c_zero

        if not const.TEST:
            self.send("handle_drifts", (self.A_last, self.c_last))
Esempio n. 11
0
class Site(Sender):
    def __init__(self, net, nid, ifc):
        super().__init__(net, nid, ifc)
        self.warmup = True
        self.A = np.zeros((const.FEATURES + 1, const.FEATURES + 1))
        self.c = np.zeros((const.FEATURES + 1, 1))
        self.S = np.zeros((const.FEATURES + 1, 1))
        self.E = np.zeros((const.FEATURES + 1, 1))
        self.X = np.zeros((const.FEATURES + 1, 1))
        self.E_global = None
        self.zeta = 0
        self.theta = 0
        self.counter = 0
        self.increment = 0

        self.win = Window(size=const.SIZE,
                          step=const.STEP,
                          points=const.TRAIN_POINTS)

    def new_stream(self, stream):
        try:
            res = self.win.update(stream)
            new, old = next(res)

            self.update_state(new, old)

            if self.warmup is True:
                self.send("warm_up", (self.A, self.c))
                if self.E_global is not None:
                    self.warmup = False
            else:
                self.update_drift()
                self.subround_process()

        except StopIteration:
            log.exeption("Window has failed.")

    def update_state(self, new, old):
        for x, y in new:
            x = x.reshape(-1, 1)
            ml1 = x.dot(x.T)
            self.A = np.add(self.A, ml1)
            ml2 = x.dot(y)
            self.c = np.add(self.c, ml2)

        for x, y in old:
            x = x.reshape(-1, 1)
            ml1 = x.dot(x.T)
            self.A = np.subtract(self.A, ml1)
            ml2 = x.dot(y)
            self.c = np.subtract(self.c, ml2)

            self.S = np.linalg.pinv(self.A).dot(self.c)

    def update_drift(self):
        self.X = np.subtract(self.S, self.E)

    def subround_process(self):
        current_counter = np.floor(
            (phi(self.X, self.E_global) - self.zeta) / self.theta)

        if current_counter > self.counter:
            self.increment = current_counter - self.counter
            self.counter = current_counter

            self.send("handle_increment", self.increment)

    # -------------------------------------------------------------------------
    # REMOTE METHOD
    def begin_round(self, E_global):
        self.E_global = np.copy(E_global)

        self.X = np.zeros((const.FEATURES + 1, 1))
        self.zeta = phi(np.zeros((const.FEATURES + 1, 1)), self.E_global)
        psi = const.K * self.zeta
        self.theta = -psi / 2 * const.K
        self.counter = 0

    def begin_subround(self, theta):
        self.counter = 0
        self.theta = theta
        self.zeta = phi(self.X, self.E_global)

    def send_zeta(self):
        self.send("handle_zetas", phi(self.X, self.E_global))

    def send_drift(self):
        self.E = self.S
        self.send("handle_drifts", self.X)
Esempio n. 12
0
class Site(Sender):
    def __init__(self, net, nid, ifc):
        super().__init__(net, nid, ifc)
        self.D = np.zeros((const.FEATURES + 1, const.FEATURES + 1))
        self.d = np.zeros((const.FEATURES + 1, 1))
        self.A = np.zeros((const.FEATURES + 1, const.FEATURES + 1))
        self.c = np.zeros((const.FEATURES + 1, 1))
        self.A_last = np.zeros((const.FEATURES + 1, const.FEATURES + 1))
        self.c_last = np.zeros((const.FEATURES + 1, 1))

        self.A_global = None
        self.w_global = None
        self.win = Window(size=const.SIZE,
                          step=const.STEP,
                          points=const.TRAIN_POINTS)
        self.warmup = True

    def new_stream(self, stream):
        # update window
        try:
            res = self.win.update(stream)
            new, old = next(res)

            self.update_state(new, old)

            if self.warmup is True:
                self.send("warm_up", (self.A, self.c))
                if self.w_global is not None:
                    self.warmup = False

                    self.A_last = np.copy(self.A)
                    self.c_last = np.copy(self.c)

            else:
                self.update_drift()

                A_in = np.linalg.pinv(self.A_global)
                norm = np.linalg.norm

                a1 = norm(np.dot(A_in, self.D))
                a2 = norm(np.dot(A_in, self.d))
                a3 = norm(np.dot((np.dot(A_in, self.D)), self.w_global))

                req = (const.ERROR * a1) + a2 + a3
                if req > const.ERROR:
                    log.info(f"Node {self.nid} raises an alert.")
                    log.info(
                        f"{const.ERROR}*{a1}+{a2}+{a3} (={req}) > {const.ERROR}*"
                    )
                    self.send("alert", None)

        except StopIteration:
            log.exception("Window has failed.")
            pass

    def update_state(self, new, old):
        for x, y in new:
            x = x.reshape(-1, 1)
            ml1 = x.dot(x.T)
            self.A = np.add(self.A, ml1)
            ml2 = x.dot(y)
            self.c = np.add(self.c, ml2)

        for x, y in old:
            x = x.reshape(-1, 1)
            ml1 = x.dot(x.T)
            self.A = np.subtract(self.A, ml1)
            ml2 = x.dot(y)
            self.c = np.subtract(self.c, ml2)

    def update_drift(self):
        self.D = np.subtract(self.A, self.A_last)
        self.d = np.subtract(self.c, self.c_last)

    # -------------------------------------------------------------------------
    # REMOTE METHOD
    def new_estimate(self, msg):
        A_global, w_global = msg
        # save received global estimate
        self.A_global = np.copy(A_global)
        self.w_global = np.copy(w_global)

    def send_data(self):
        # send local state
        log.info(f"Node {self.nid} sends its local state,")

        self.A_last = np.copy(self.A)
        self.c_last = np.copy(self.c)

        self.D = np.zeros((const.FEATURES + 1, const.FEATURES + 1))
        self.d = np.zeros((const.FEATURES + 1, 1))

        self.send("sync", (self.A_last, self.c_last))
Esempio n. 13
0
 def from_json_data(cls, json_data: dict) -> 'Icon':
     return cls(json_data["Name"], json_data["ImagePath"],
                Window.from_json_data(json_data["Window"]), json_data['ID'])
Esempio n. 14
0
 def from_json_data(cls, json_data: dict) -> 'OffsetTreatment':
     return cls(json_data["UseOnWindow"],
                Window.from_json_data(json_data["Window"]),
                json_data["UseOnBaseline"],
                Window.from_json_data(json_data["Baseline"]),
                json_data['Offset'], json_data["Order"], json_data["ID"])