Esempio n. 1
0
def Exp(device="llvm", lib_path="./", ndim=None, dtype=None):
    '''
    exp
    Args:
        device:
        lib_path:
        ndim:
        dtype:

    Returns:
    '''
    shape = [tvm.var("n" + str(i)) for i in range(ndim)]
    opname = "Exp_ndim%d_%s" % (ndim, dtype)
    print(opname)

    # define compute
    in_tensor = tvm.placeholder(shape, dtype=dtype, name='in_tensor')
    if 'int' in dtype:
        input_tensor = AsType(in_tensor, 'float32')
        out_tensor = topi.exp(input_tensor)
        out_tensor = AsType(out_tensor, in_tensor.dtype)
    else:
        out_tensor = topi.exp(in_tensor)
    tensor_list = [in_tensor, out_tensor]
    s = topi.generic.schedule_injective(out_tensor)
    Genlib(s, tensor_list, device, opname, lib_path)
def verify_reduce_map_ele(in_shape, axis, keepdims, type="sum"):
    # Build the logic and compile the function
    dat_dtype = "float32"
    A = tvm.placeholder(shape=in_shape, name="A", dtype=dat_dtype)
    A1 = topi.sqrt(topi.exp(A))
    out_dtype = "float32"
    if type == "sum":
        B = topi.sum(A1, axis=axis, keepdims=keepdims)
    elif type == "max":
        B = topi.max(A1, axis=axis, keepdims=keepdims)
    elif type == "min":
        B = topi.min(A1, axis=axis, keepdims=keepdims)
    elif type == "argmax":
        B = topi.argmax(A1, axis=axis, keepdims=keepdims)
        out_dtype = "int32"
    elif type == "argmin":
        B = topi.argmin(A1, axis=axis, keepdims=keepdims)
        out_dtype = "int32"
    else:
        raise NotImplementedError

    def check_device(device):
        if not tvm.module.enabled(device):
            print("Skip because %s is not enabled" % device)
            return
        with tvm.target.create(device):
            s = topi.generic.schedule_reduce(B)
        ctx = tvm.context(device, 0)
        foo = tvm.build(s, [A, B], device, name="sum")
        # Test
        in_npy = np.random.uniform(size=in_shape).astype(np.float32)
        in_npy_map = np.sqrt(np.exp(in_npy)).astype(np.float32)
        if type == "sum":
            out_npy = in_npy_map.sum(axis=axis, keepdims=keepdims)
        elif type == "max":
            out_npy = in_npy_map.max(axis=axis, keepdims=keepdims)
        elif type == "min":
            out_npy = in_npy_map.min(axis=axis, keepdims=keepdims)
        elif type == "argmax":
            out_npy = _my_npy_argmax(in_npy_map, axis=axis, keepdims=keepdims)
        elif type == "argmin":
            out_npy = _my_npy_argmin(in_npy_map, axis=axis, keepdims=keepdims)
        else:
            raise NotImplementedError
        data_tvm = tvm.nd.array(in_npy, ctx=ctx)
        out_tvm = tvm.nd.empty(shape=out_npy.shape, ctx=ctx, dtype=out_dtype)
        for _ in range(1):
            foo(data_tvm, out_tvm)
        np.testing.assert_allclose(out_tvm.asnumpy(), out_npy, 1E-3, 1E-3)

    check_device("opencl")
    check_device("cuda")
    check_device("metal")
    check_device("rocm")
Esempio n. 3
0
def exp_compute(attrs, inputs, output_type, target):
    assert len(inputs) == 1
    return [topi.exp(inputs[0])]
Esempio n. 4
0
def verify_reduce_map_ele(in_shape,
                          axis,
                          keepdims,
                          type="sum",
                          dtype="float32"):
    # Build the logic and compile the function
    A = tvm.placeholder(shape=in_shape, name="A", dtype=dtype)
    A1 = topi.sqrt(topi.exp(A))
    out_dtype = dtype
    if type == "sum":
        B = topi.sum(A1, axis=axis, keepdims=keepdims)
    elif type == "all":
        B = topi.all(A, axis=axis, keepdims=keepdims)
    elif type == "any":
        B = topi.any(A, axis=axis, keepdims=keepdims)
    elif type == "max":
        B = topi.max(A1, axis=axis, keepdims=keepdims)
    elif type == "min":
        B = topi.min(A1, axis=axis, keepdims=keepdims)
    elif type == "argmax":
        B = topi.argmax(A1, axis=axis, keepdims=keepdims)
        out_dtype = "int32"
    elif type == "argmin":
        B = topi.argmin(A1, axis=axis, keepdims=keepdims)
        out_dtype = "int32"
    else:
        raise NotImplementedError

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        with tvm.target.create(device):
            s = topi.generic.schedule_reduce(B)

        foo = tvm.build(s, [A, B], device, name=type)
        # Test
        if dtype == 'bool':
            in_npy_map = in_npy = np.random.choice([True, False],
                                                   size=in_shape)
        else:
            in_npy = np.random.uniform(-1, 1, size=in_shape).astype(dtype)
            in_npy_map = np.sqrt(np.exp(in_npy)).astype(dtype)

        if type == "sum":
            out_npy = in_npy_map.sum(axis=axis, keepdims=keepdims)
        elif type == "all" and dtype == 'bool':
            out_npy = in_npy_map.all(axis=axis, keepdims=keepdims)
        elif type == "any" and dtype == "bool":
            out_npy = in_npy_map.any(axis=axis, keepdims=keepdims)
        elif type == "max":
            out_npy = in_npy_map.max(axis=axis, keepdims=keepdims)
        elif type == "min":
            out_npy = in_npy_map.min(axis=axis, keepdims=keepdims)
        elif type == "argmax":
            out_npy = _my_npy_argmax(in_npy_map, axis=axis, keepdims=keepdims)
        elif type == "argmin":
            out_npy = _my_npy_argmin(in_npy_map, axis=axis, keepdims=keepdims)
        else:
            raise NotImplementedError
        data_tvm = tvm.nd.array(in_npy, ctx=ctx)
        out_tvm = tvm.nd.empty(shape=out_npy.shape, ctx=ctx, dtype=out_dtype)
        for _ in range(1):
            foo(data_tvm, out_tvm)
        if type == "argmax" or type == "argmin":
            out_tvm_indices = out_tvm.asnumpy()
            if keepdims:
                out_tvm_indices = np.take(out_tvm_indices,
                                          indices=0,
                                          axis=axis)
            if axis is None:
                out_tvm_val = in_npy_map.ravel()[out_tvm_indices]
            else:
                other_indices = tuple(
                    np.indices(in_shape[0:axis] + in_shape[(axis + 1):]))
                sel_indices = other_indices[0:axis] + (
                    out_tvm_indices, ) + other_indices[axis:]
                out_tvm_val = in_npy_map[sel_indices]
            if type == "argmax":
                tvm.testing.assert_allclose(out_tvm_val,
                                            in_npy_map.max(axis=axis), 1E-3,
                                            1E-3)
            elif type == "argmin":
                tvm.testing.assert_allclose(out_tvm_val,
                                            in_npy_map.min(axis=axis), 1E-3,
                                            1E-3)
        else:
            tvm.testing.assert_allclose(out_tvm.asnumpy(), out_npy, 1E-3, 1E-3)

    for device in get_all_backend():
        check_device(device)
Esempio n. 5
0
def verify_reduce_map_ele(in_shape, axis, keepdims, type="sum"):
    # Build the logic and compile the function
    dat_dtype = "float32"
    A = tvm.placeholder(shape=in_shape, name="A", dtype=dat_dtype)
    A1 = topi.sqrt(topi.exp(A))
    out_dtype = "float32"
    if type == "sum":
        B = topi.sum(A1, axis=axis, keepdims=keepdims)
    elif type == "max":
        B = topi.max(A1, axis=axis, keepdims=keepdims)
    elif type == "min":
        B = topi.min(A1, axis=axis, keepdims=keepdims)
    elif type == "argmax":
        B = topi.argmax(A1, axis=axis, keepdims=keepdims)
        out_dtype = "int32"
    elif type == "argmin":
        B = topi.argmin(A1, axis=axis, keepdims=keepdims)
        out_dtype = "int32"
    else:
        raise NotImplementedError

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        with tvm.target.create(device):
            s = topi.generic.schedule_reduce(B)

        foo = tvm.build(s, [A, B], device, name=type)
        # Test
        in_npy = np.random.uniform(size=in_shape).astype(np.float32)
        in_npy_map = np.sqrt(np.exp(in_npy)).astype(np.float32)
        if type == "sum":
            out_npy = in_npy_map.sum(axis=axis, keepdims=keepdims)
        elif type == "max":
            out_npy = in_npy_map.max(axis=axis, keepdims=keepdims)
        elif type == "min":
            out_npy = in_npy_map.min(axis=axis, keepdims=keepdims)
        elif type == "argmax":
            out_npy = _my_npy_argmax(in_npy_map, axis=axis, keepdims=keepdims)
        elif type == "argmin":
            out_npy = _my_npy_argmin(in_npy_map, axis=axis, keepdims=keepdims)
        else:
            raise NotImplementedError
        data_tvm = tvm.nd.array(in_npy, ctx=ctx)
        out_tvm = tvm.nd.empty(shape=out_npy.shape, ctx=ctx, dtype=out_dtype)
        for _ in range(1):
            foo(data_tvm, out_tvm)
        if type == "argmax" or type == "argmin":
            out_tvm_indices = out_tvm.asnumpy()
            if keepdims:
                out_tvm_indices = np.take(out_tvm_indices, indices=0, axis=axis)
            if axis is None:
                out_tvm_val = in_npy_map.ravel()[out_tvm_indices]
            else:
                other_indices = tuple(np.indices(in_shape[0:axis] + in_shape[(axis+1):]))
                sel_indices = other_indices[0:axis] + (out_tvm_indices,) + other_indices[axis:]
                out_tvm_val = in_npy_map[sel_indices]
            if type == "argmax":
                np.testing.assert_allclose(out_tvm_val, in_npy_map.max(axis=axis), 1E-3, 1E-3)
            elif type == "argmin":
                np.testing.assert_allclose(out_tvm_val, in_npy_map.min(axis=axis), 1E-3, 1E-3)
        else:
            np.testing.assert_allclose(out_tvm.asnumpy(), out_npy, 1E-3, 1E-3)
    for device in ["cuda", "opencl", "metal", "llvm", "rocm", "vulkan"]:
        check_device(device)
Esempio n. 6
0
# https://rufflewind.com/2016-12-30/reverse-mode-automatic-differentiation

import tvm
import topi
import numpy

x = tvm.te.placeholder((3, ), name='x')
w = tvm.te.placeholder((3, ), name='w')
z1 = topi.multiply(x, w)
z2 = topi.sum(z1)
z3 = topi.multiply(z2, -1)
z4 = topi.exp(z3)
z5 = topi.add(z4, 1)
z6 = topi.divide(1, z5)

[dw] = tvm.te.gradient(z6, w)
s = tvm.te.create_schedule(dw.op)
g = tvm.build(s, [x, w, dw])

# The default tensor type in tvm
dtype = "float32"
target = 'llvm'
ctx = tvm.context(target, 0)

# # Random generated tensor for testing
x1 = tvm.nd.array(numpy.array([1, 3, 2]).astype(dtype), ctx)
w1 = tvm.nd.array(numpy.array([2, 1, -2]).astype(dtype), ctx)
dw1 = tvm.nd.empty(shape=(3, ), dtype='float32', ctx=ctx)
g(x1, w1, dw1)
print("ret=", dw1)